Informative Path Planning Using Physics-Informed Gaussian Processes for Aerial Mapping of 5G Networks

计算机科学 外推法 高斯分布 基本事实 全球定位系统 运动规划 路径(计算) 高斯过程 功能(生物学) 人工智能 数据挖掘 机器学习 实时计算 数学 电信 统计 物理 机器人 生物 进化生物学 程序设计语言 量子力学
作者
Jonas Gruner,Jan Graßhoff,Carlos Castelar Wembers,Kilian Schweppe,Georg Schildbach,Philipp Rostalski
出处
期刊:Sensors [MDPI AG]
卷期号:24 (23): 7601-7601
标识
DOI:10.3390/s24237601
摘要

The advent of 5G technology has facilitated the adoption of private cellular networks in industrial settings. Ensuring reliable coverage while maintaining certain requirements at its boundaries is crucial for successful deployment yet challenging without extensive measurements. In this article, we propose the leveraging of unmanned aerial vehicles (UAVs) and Gaussian processes (GPs) to reduce the complexity of this task. Physics-informed mean functions, including a detailed ray-tracing simulation, are integrated into the GP models to enhance the extrapolation performance of the GP prediction. As a central element of the GP prediction, a quantitative evaluation of different mean functions is conducted. The most promising candidates are then integrated into an informative path-planning algorithm tasked with performing an efficient UAV-based cellular network mapping. The algorithm combines the physics-informed GP models with Bayesian optimization and is developed and tested in a hardware-in-the-loop simulation. The quantitative evaluation of the mean functions and the informative path-planning simulation are based on real-world measurements of the 5G reference signal received power (RSRP) in a cellular 5G-SA campus network at the Port of Lübeck, Germany. These measurements serve as ground truth for both evaluations. The evaluation results demonstrate that using an appropriate mean function can result in an enhanced prediction accuracy of the GP model and provide a suitable basis for informative path planning. The subsequent informative path-planning simulation experiments highlight these findings. For a fixed maximum travel distance, a path is iteratively computed, reducing the flight distance by up to 98% while maintaining an average root-mean-square error of less than 6 dBm when compared to the measurement trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty1996完成签到,获得积分10
刚刚
Simonn29完成签到,获得积分10
刚刚
ZYY完成签到,获得积分10
刚刚
刚刚
1秒前
崛起之邦发布了新的文献求助10
1秒前
等等完成签到,获得积分10
1秒前
wanci应助啊啊啊采纳,获得10
2秒前
2秒前
qwer完成签到 ,获得积分10
3秒前
3秒前
豆豆哥完成签到 ,获得积分10
4秒前
蛋堡发布了新的文献求助10
4秒前
4秒前
WangSiwei完成签到,获得积分10
5秒前
zzc完成签到,获得积分20
5秒前
小树完成签到,获得积分10
5秒前
5秒前
春鹏完成签到,获得积分10
5秒前
Zhihu完成签到,获得积分10
6秒前
6秒前
yeeming应助昏睡的蟠桃采纳,获得10
6秒前
庸人自扰发布了新的文献求助10
7秒前
典雅长颈鹿完成签到,获得积分10
7秒前
乌午五物完成签到,获得积分10
7秒前
7秒前
myh发布了新的文献求助10
7秒前
一种信仰完成签到 ,获得积分10
8秒前
8秒前
李爱国应助宋某采纳,获得10
8秒前
8秒前
cc发布了新的文献求助10
8秒前
ZhangDaying完成签到 ,获得积分10
9秒前
starry完成签到,获得积分20
9秒前
毛毛12345完成签到,获得积分10
9秒前
崛起之邦完成签到,获得积分10
11秒前
从心开始发布了新的文献求助10
11秒前
这丁完成签到,获得积分10
11秒前
11秒前
穿纸发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489497
求助须知:如何正确求助?哪些是违规求助? 4588269
关于积分的说明 14418299
捐赠科研通 4520002
什么是DOI,文献DOI怎么找? 2476495
邀请新用户注册赠送积分活动 1462008
关于科研通互助平台的介绍 1435041