Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation

计算机科学 人工智能 目标检测 超图 计算机视觉 计算 对象(语法) 视觉对象识别的认知神经科学 可视化 模式识别(心理学) 数学 算法 离散数学
作者
Yifan Feng,Jiangang Huang,Shaoyi Du,Shihui Ying,Jun‐Hai Yong,Yipeng Li,Guiguang Ding,Rongrong Ji,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14 被引量:25
标识
DOI:10.1109/tpami.2024.3524377
摘要

We introduce Hyper-YOLO, a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features. Traditional YOLO models, while powerful, have limitations in their neck designs that restrict the integration of cross-level features and the exploitation of high-order feature interrelationships. To address these challenges, we propose the Hypergraph Computation Empowered Semantic Collecting and Scattering (HGC-SCS) framework, which transposes visual feature maps into a semantic space and constructs a hypergraph for high-order message propagation. This enables the model to acquire both semantic and structural information, advancing beyond conventional feature-focused learning. Hyper-YOLO incorporates the proposed Mixed Aggregation Network (MANet) in its backbone for enhanced feature extraction and introduces the Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net) in its neck. HyperC2Net operates across five scales and breaks free from traditional grid structures, allowing for sophisticated high-order interactions across levels and positions. This synergy of components positions Hyper-YOLO as a state-of-the-art architecture in various scale models, as evidenced by its superior performance on the COCO dataset. Specifically, Hyper-YOLO-N significantly outperforms the advanced YOLOv8-N and YOLOv9-T with 12% and 9% improvements. The source codes are at https://github.com/iMoonLab/Hyper-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠采白完成签到,获得积分10
刚刚
刚刚
小马甲应助Joseph采纳,获得20
刚刚
刚刚
安详的灰狼完成签到 ,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
1秒前
LiQi完成签到,获得积分10
1秒前
Liury完成签到 ,获得积分10
2秒前
Dengjia完成签到,获得积分20
2秒前
2秒前
传奇3应助ziyue采纳,获得10
2秒前
2秒前
东方诩完成签到,获得积分10
2秒前
3秒前
3秒前
Cen完成签到,获得积分10
3秒前
3秒前
wuming7890发布了新的文献求助10
3秒前
4秒前
少堂完成签到,获得积分10
4秒前
YY发布了新的文献求助10
4秒前
英勇含烟完成签到,获得积分10
4秒前
明天见完成签到 ,获得积分10
4秒前
tingtinghuang完成签到,获得积分10
5秒前
叶子完成签到 ,获得积分10
5秒前
5秒前
世外完成签到,获得积分10
5秒前
精明的盼雁完成签到,获得积分10
6秒前
6秒前
肱二头肌完成签到,获得积分10
6秒前
慕豁发布了新的文献求助10
7秒前
英勇明雪完成签到,获得积分10
7秒前
魏魏完成签到,获得积分10
7秒前
cdjyoona完成签到,获得积分10
7秒前
小鹿完成签到,获得积分10
7秒前
皮半鬼发布了新的文献求助10
7秒前
娟不卷发布了新的文献求助10
7秒前
8秒前
寇博翔发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345865
求助须知:如何正确求助?哪些是违规求助? 3852308
关于积分的说明 12024265
捐赠科研通 3493918
什么是DOI,文献DOI怎么找? 1917154
邀请新用户注册赠送积分活动 960143
科研通“疑难数据库(出版商)”最低求助积分说明 860141