Prediction of Spray Collapse Patterns on Different Fuel Mixture Compositions Based on Deep Learning Framework

深度学习 人工智能 计算机科学
作者
Fengnian Zhao,Ying Shirley Meng,Ziming Zhou,David L. S. Hung
标识
DOI:10.1115/icef2024-140636
摘要

Abstract Flash boiling significantly enhances fuel atomization quality but concurrently amplifies the incidence of spray collapse — a phenomenon detrimental to combustion efficiency and emission control. This challenge is particularly pronounced in multi-component fuel sprays, which are integral to optimizing biofuel and alternative fuel applications. Despite advances in data-driven methodologies for categorizing spray collapse conditions into discrete states based on fuel composition and experimental parameters, a critical gap remains in our capability to infer the specific morphology of spray plumes. In order to bridge the gap by quantitatively predicting the cross-pattern spray morphologies, this study utilized the macroscopic spray cross-patterns of multiple-component fuel mixtures under 12 different sets of fuel temperatures captured by a high-speed planar laser Mie-scattering imaging system. A dataset obtained under 12 sets of experimental conditions was employed to train a physics-guided deep learning framework. This framework integrates domain-specific knowledge with deep learning algorithms to accurately model the complex interactions between fuel mixture components and their impact on spray dynamics. The results indicated that the proposed framework could efficiently capture the underlying correlations between varying fuel mixture compositions and their resultant spray patterns given certain environmental parameters. Moreover, it exhibited capacities to extrapolate beyond the discrete experimental dataset, predicting the fuel spray morphology under untested fuel compositions. This predictive capability facilitates the identification of optimal mixture states for achieving superior fuel atomization quality, thereby contributing to the advancement of fuel efficiency and emissions reduction strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗浩阳发布了新的文献求助10
刚刚
小吃货完成签到,获得积分10
1秒前
小耳朵发布了新的文献求助30
1秒前
JayChou发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
nuonuoweng应助怡然雁风采纳,获得10
1秒前
JERRY完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
zhou81发布了新的文献求助10
2秒前
2秒前
Sivledy完成签到,获得积分10
3秒前
香蕉觅云应助冻干粉采纳,获得10
3秒前
4秒前
美晶发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
李林鑫完成签到 ,获得积分10
6秒前
安静的饼干完成签到,获得积分10
7秒前
爆米花应助zbn采纳,获得10
7秒前
小白鞋完成签到 ,获得积分10
7秒前
7秒前
科研小白完成签到,获得积分10
8秒前
qh0305完成签到,获得积分10
9秒前
hsxht发布了新的文献求助10
9秒前
许墨生命科学研究所完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
chenli发布了新的文献求助10
12秒前
wsy关闭了wsy文献求助
12秒前
13秒前
sms9797完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
algain完成签到 ,获得积分10
14秒前
15秒前
16秒前
顾白凡完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5757845
求助须知:如何正确求助?哪些是违规求助? 5511609
关于积分的说明 15389025
捐赠科研通 4895373
什么是DOI,文献DOI怎么找? 2633022
邀请新用户注册赠送积分活动 1581132
关于科研通互助平台的介绍 1536780