动力学
小角X射线散射
混合(物理)
材料科学
散射
纳米颗粒
芯(光纤)
化学物理
原位
化学工程
湍流
X射线
结晶学
分子物理学
纳米技术
化学
光学
热力学
物理
有机化学
复合材料
经典力学
工程类
量子力学
作者
Sophia R. Dasaro,Lukas R. Johnson,Malinda Salim,Vincent He,David F. Amelemah,Ellie Ponsonby‐Thomas,Bryce Barber,Wye‐Khay Fong,Jonathan Caukwell,Elizabeth Peach,Ben Li,Livia Salvati Manni,Nigel Kirby,Gregory G. Warr,Robert K. Prud’homme,Ben J. Boyd,Kurt D. Ristroph
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-04-16
标识
DOI:10.1021/acs.nanolett.5c01095
摘要
The encapsulation of liquid crystalline phases, formed from biocompatible amphiphiles, into nanoparticles has emerged as a promising delivery strategy for hydrophilic and hydrophobic therapeutics. Strategies to characterize these delivery systems as a function of formulation parameters and aqueous environment post-manufacture are well-documented. A critical gap remains regarding the assembly kinetics and in situ dynamics of these systems using industrially relevant manufacturing techniques. Systematically investigating these characteristics is challenging: computational simulations are time-intensive and costly, while current in situ quantification techniques are limited in scalability and batch size. We here combine synchrotron small-angle X-ray scattering with Flash NanoPrecipitation, a scalable turbulent mixing technology, to capture time-resolved measurements of the formation of liquid crystal phases under nanoconfinement during and after nanoprecipitation. This technique reveals that self-assembly occurs in two steps, with internal liquid crystal self-assembly occurring on longer time scales (seconds to minutes) than initial nanoprecipitation (milliseconds) as a function of formulation parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI