Dynamic Stress Prediction during Load Rejections in Hydraulic Turbines

水轮机 压力(语言学) 动应力 动载试验 环境科学 控制理论(社会学) 结构工程 计算机科学 工程类 动载荷 涡轮机 机械工程 人工智能 控制(管理) 哲学 语言学
作者
C. Bénard,S Afara,Christine Monette,B Nennemann
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1483 (1): 012017-012017
标识
DOI:10.1088/1755-1315/1483/1/012017
摘要

Abstract Load rejections occur when a hydraulic turbine, producing power, is disconnected from the electric grid. The sudden loss of load will trigger the emergency guide vane closing sequence, and the turbine will accelerate to a maximum speed before decelerating. During this event, the runner can experience large dynamic stresses, which can significantly decrease its fatigue life if load rejections occur frequently. So far in the reported literature the approach of simulating a load rejection is to perform a transient analysis, which includes the guide vane closing sequence. This approach is difficult to setup, due to the moving mesh required for closing the guide vanes and demands large computational effort. In the current work, an alternative quasi-steady approach of predicting the maximum dynamic stresses during load rejection is presented and validated against prototype measurements. The method involves a one-way fluid-structure interaction simulation with pressure loads obtained from an unsteady CFD simulation performed at the guide vane opening corresponding to the maximum speed during the load rejection. At this speed, the runner is momentarily in a no-load condition, and measurements show that the dynamic stresses are at a maximum. With this approach, it is shown that the maximum dynamic stresses are well predicted during a load rejection. Given the high level of uncertainty in the measurements and the stochastic nature of load rejections, it can be concluded that the approach gives conservative and satisfactory results, thus validating the quasi-steady assumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助刘龙强采纳,获得10
刚刚
NexusExplorer应助妮妮采纳,获得10
刚刚
1秒前
子非鱼完成签到,获得积分20
1秒前
123完成签到 ,获得积分10
2秒前
2秒前
2秒前
加油加油完成签到,获得积分10
3秒前
丰富的以筠完成签到,获得积分10
3秒前
4秒前
丘比特应助十一采纳,获得10
4秒前
念念发布了新的文献求助10
4秒前
5秒前
幽默亦旋完成签到 ,获得积分10
5秒前
阿斯顿完成签到,获得积分10
5秒前
上官若男应助ayan采纳,获得10
6秒前
medlive2020完成签到,获得积分10
6秒前
quanbin发布了新的文献求助10
6秒前
科研挂发布了新的文献求助30
6秒前
6秒前
李林发布了新的文献求助10
6秒前
黎某发布了新的文献求助10
6秒前
张怡博完成签到 ,获得积分10
7秒前
美好斓发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
hhuajw完成签到,获得积分10
9秒前
9秒前
yukito发布了新的文献求助20
10秒前
medlive2020发布了新的文献求助10
10秒前
野性的夏柳完成签到,获得积分10
10秒前
能干宛秋发布了新的文献求助10
11秒前
善学以致用应助夏天的风采纳,获得10
11秒前
科研通AI5应助栗子采纳,获得10
11秒前
ZXT完成签到 ,获得积分10
11秒前
欣喜的未来完成签到,获得积分10
11秒前
秀丽远航完成签到,获得积分10
11秒前
adheret完成签到,获得积分10
12秒前
尊敬的凝丹完成签到 ,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881