清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-invasive biopsy diagnosis of diabetic kidney disease via deep learning applied to retinal images: a population-based study

医学 视网膜 疾病 肾脏疾病 人口 活检 病理 放射科 人工智能 计算机科学 眼科 内科学 环境卫生
作者
Ziyao Meng,Zhouyu Guan,Shujie Yu,Yi-Lan Wu,Yu Zhao,Jie Shen,Cynthia Ciwei Lim,Ting‐Li Chen,Dawei Yang,An Ran Ran,Feng He,Haslina Hamzah,Sarkaaj Singh,Anis Syazwani Abd Raof,Jian Wen Samuel Lee-Boey,Soo Kun Lim,Xufang Sun,Shuwang Ge,Gang Xu,Hua Su
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:: 100868-100868 被引量:3
标识
DOI:10.1016/j.landig.2025.02.008
摘要

Improving the accessibility of screening diabetic kidney disease (DKD) and differentiating isolated diabetic nephropathy from non-diabetic kidney disease (NDKD) are two major challenges in the field of diabetes care. We aimed to develop and validate an artificial intelligence (AI) deep learning system to detect DKD and isolated diabetic nephropathy from retinal fundus images. In this population-based study, we developed a retinal image-based AI-deep learning system, DeepDKD, pretrained using 734 084 retinal fundus images. First, for DKD detection, we used 486 312 retinal images from 121 578 participants in the Shanghai Integrated Diabetes Prevention and Care System for development and internal validation, and ten multi-ethnic datasets from China, Singapore, Malaysia, Australia, and the UK (65 406 participants) for external validation. Second, to differentiate isolated diabetic nephropathy from NDKD, we used 1068 retinal images from 267 participants for development and internal validation, and three multi-ethnic datasets from China, Malaysia, and the UK (244 participants) for external validation. Finally, we conducted two proof-of-concept studies: a prospective real-world study with 3 months' follow-up to evaluate the effectiveness of DeepDKD in screening DKD; and a longitudinal analysis of the effectiveness of DeepDKD in differentiating isolated diabetic nephropathy from NDKD on renal function changes with 4·6 years' follow-up. For detecting DKD, DeepDKD achieved an area under the receiver operating characteristic curve (AUC) of 0·842 (95% CI 0·838-0·846) on the internal validation dataset and AUCs of 0·791-0·826 across external validation datasets. For differentiating isolated diabetic nephropathy from NDKD, DeepDKD achieved an AUC of 0·906 (0·825-0·966) on the internal validation dataset and AUCs of 0·733-0·844 across external validation datasets. In the prospective study, compared with the metadata model, DeepDKD could detect DKD with higher sensitivity (89·8% vs 66·3%, p<0·0001). In the longitudinal study, participants with isolated diabetic nephropathy and participants with NDKD identified by DeepDKD had a significant difference in renal function outcomes (proportion of estimated glomerular filtration rate decline: 27·45% vs 52·56%, p=0·0010). Among diverse multi-ethnic populations with diabetes, a retinal image-based AI-deep learning system showed its potential for detecting DKD and differentiating isolated diabetic nephropathy from NDKD in clinical practice. National Key R & D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Shanghai Municipal Key Clinical Specialty, Shanghai Research Centre for Endocrine and Metabolic Diseases, Innovative research team of high-level local universities in Shanghai, Noncommunicable Chronic Diseases-National Science and Technology Major Project, Clinical Special Program of Shanghai Municipal Health Commission, and the three-year action plan to strengthen the construction of public health system in Shanghai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muriel完成签到,获得积分0
1秒前
耕牛热完成签到,获得积分10
24秒前
KINGAZX完成签到 ,获得积分10
35秒前
一盏壶完成签到,获得积分10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
Tales完成签到 ,获得积分10
2分钟前
英勇的红酒完成签到 ,获得积分10
2分钟前
典雅的寄翠完成签到 ,获得积分10
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
闪闪飞机发布了新的文献求助10
3分钟前
唐泽雪穗应助闪闪飞机采纳,获得10
3分钟前
闪闪飞机完成签到,获得积分20
3分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
iso发布了新的文献求助10
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
浮游应助iso采纳,获得10
4分钟前
iso完成签到,获得积分10
4分钟前
5分钟前
隔壁老王发布了新的文献求助10
6分钟前
Jasper应助隔壁老王采纳,获得10
6分钟前
Vintoe完成签到 ,获得积分10
6分钟前
单纯幻莲完成签到 ,获得积分10
7分钟前
576-576完成签到 ,获得积分10
7分钟前
8分钟前
不吃别夹发布了新的文献求助10
8分钟前
不吃别夹完成签到,获得积分10
8分钟前
嘚儿塔完成签到 ,获得积分10
8分钟前
方白秋完成签到,获得积分10
9分钟前
xybjt完成签到 ,获得积分10
9分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
violetlishu完成签到 ,获得积分10
10分钟前
Lucas应助听风说情话采纳,获得10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4729683
求助须知:如何正确求助?哪些是违规求助? 4085290
关于积分的说明 12634035
捐赠科研通 3792833
什么是DOI,文献DOI怎么找? 2094504
邀请新用户注册赠送积分活动 1120349
科研通“疑难数据库(出版商)”最低求助积分说明 996517