Recent advances in blood-brain barrier-on-a-chip models

血脑屏障 材料科学 炸薯条 纳米技术 神经科学 计算机科学 电信 心理学 中枢神经系统
作者
Johanna Vetter,Ilaria Palagi,Ari Waisman,Andreas Blaeser
出处
期刊:Acta Biomaterialia [Elsevier]
卷期号:197: 1-28 被引量:9
标识
DOI:10.1016/j.actbio.2025.03.041
摘要

The blood-brain barrier is a physiological barrier between the vascular system and the nervous system. Under healthy conditions, it restricts the passage of most biomolecules into the brain, making drug development exceedingly challenging. Conventional cell-based in vitro models provide valuable insights into certain features of the BBB. Nevertheless, these models often lack the three-dimensional structure and dynamic interactions of the surrounding microenvironment, which greatly influence cell functionality. Consequently, considerable efforts have been made to enhance in vitro models for drug development and disease research. Recently, microfluidic organ-on-a-chip systems have emerged as promising candidates to better mimic the dynamic nature of the BBB. This review provides a comprehensive overview of recent BBB-on-chip devices. The typical building blocks, chip designs, the perfusion infrastructure, and readouts used to characterize and evaluate BBB formation are presented, analyzed, and discussed in detail. STATEMENT OF SIGNIFICANCE: The blood-brain barrier (BBB) is a highly selective barrier that controls what can enter the brain. While it protects the brain from harmful substances, it also hinders the delivery of treatments for neurological diseases such as Alzheimer's and Parkinson's. Due to its complexity, studying the BBB in living organisms remains difficult. However, recent advances in "organ-on-a-chip" technology have allowed scientists to create small, engineered models that replicate the BBB. These models provide a powerful platform to study diseases and test potential drugs with greater accuracy than traditional methods. Organ-on-a-chip devices are designed to mimic the behavior of organs or tissues in the human body, offering a more realistic and controlled environment for research. This review highlights recent breakthroughs in BBB-on-a-chip technology, showing how these models enhance current research and have the potential to transform the way we study brain diseases and develop new drugs. By integrating biology and engineering, BBB-on-a-chip technology has the potential to transform neuroscience research, improve drug development, and enhance our understanding of brain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李木槿发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
完美世界应助无脸男采纳,获得10
1秒前
大气亦巧完成签到,获得积分10
1秒前
甜美砖家发布了新的文献求助10
1秒前
2秒前
怡然的涫发布了新的文献求助10
3秒前
cjhAshley完成签到,获得积分10
4秒前
超级小猫咪完成签到,获得积分10
4秒前
泡泡完成签到,获得积分10
4秒前
4秒前
klony完成签到,获得积分10
5秒前
OrtonF7完成签到,获得积分20
5秒前
拼搏的白梅完成签到,获得积分10
5秒前
5秒前
小王发布了新的文献求助30
5秒前
5秒前
6秒前
duj622完成签到 ,获得积分10
6秒前
11应助zygclwl采纳,获得10
6秒前
6秒前
完美世界应助fan采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
不鞠一格完成签到,获得积分10
7秒前
7秒前
7秒前
CipherSage应助Areeha采纳,获得10
8秒前
8秒前
8秒前
平常的如曼完成签到,获得积分10
8秒前
宁静致远完成签到,获得积分10
8秒前
JamesPei应助俊逸青柏采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710194
求助须知:如何正确求助?哪些是违规求助? 5198067
关于积分的说明 15259712
捐赠科研通 4862771
什么是DOI,文献DOI怎么找? 2610309
邀请新用户注册赠送积分活动 1560657
关于科研通互助平台的介绍 1518334