Broad Learning System Based on Fractional Feature Optimization

特征(语言学) 计算机科学 人工智能 语言学 哲学
作者
Dan Zhang,Tong Zhang,C. L. Philip Chen,Tao Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (8): 15490-15501 被引量:2
标识
DOI:10.1109/tnnls.2025.3540076
摘要

Broad learning system (BLS) have demonstrated excellent performance in terms of both speed and accuracy in tasks such as image classification. In BLS, the feature nodes predominantly utilize linear features, and sparse representation is mainly employed in the feature optimization component. The robustness of these features to different data needs to be improved. Although there are many improved algorithms for BLS in feature optimization, there is no improvement based on fractional calculus at present. This article proposes BLS-FC, a novel data classification and regression method that can seamlessly combine BLS and fractional calculation. Fractional calculus describes the properties of data between integer orders and has memory properties. Fractional Fourier transform (Frft) also has time domain and frequency domain information. First, Frft is added to the broad learning feature node extraction to enrich the node features, which is called BLS-Frft. Second, fractional calculus is integrated into the BLS-Frft sparse representation feature optimization, and the feature representation capability is enhanced by fractional differential memory. This part is called BLS-FS. Finally, in order to solve the problem of unstable features of random fractional order subspaces, a fractional order multiscale feature interaction based on BLS-Frft is proposed, which is called BLS-MF. Experimental results across various classification and regression datasets demonstrate the superior performance of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhixiangkuaibiye完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
bkagyin应助狂野小鸭子采纳,获得10
2秒前
charon完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Eaven发布了新的文献求助10
3秒前
金江客死发布了新的文献求助10
4秒前
5秒前
刘刘发布了新的文献求助10
6秒前
Perhy完成签到,获得积分20
7秒前
7秒前
科研通AI6.1应助豌豆lwy采纳,获得10
8秒前
GingerF应助Olivier采纳,获得50
8秒前
8秒前
9秒前
Perhy发布了新的文献求助10
11秒前
尊敬的发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
15秒前
鳗鱼柚子完成签到 ,获得积分10
15秒前
15秒前
MIN完成签到 ,获得积分10
17秒前
可爱迪发布了新的文献求助10
17秒前
在水一方应助罗余晴采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
CodeCraft应助忐忑的天真采纳,获得10
19秒前
12发布了新的文献求助10
20秒前
搜集达人应助林木木采纳,获得10
21秒前
22秒前
刘刘完成签到,获得积分10
22秒前
Arvin发布了新的文献求助10
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
hxl完成签到,获得积分10
25秒前
25秒前
27秒前
罐罐糖完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777597
求助须知:如何正确求助?哪些是违规求助? 5634534
关于积分的说明 15446288
捐赠科研通 4909506
什么是DOI,文献DOI怎么找? 2641796
邀请新用户注册赠送积分活动 1589749
关于科研通互助平台的介绍 1544178