Prediction of postpartum depression in women: development and validation of multiple machine learning models

产后抑郁症 萧条(经济学) 计算机科学 机器学习 医学 人工智能 怀孕 生物 遗传学 宏观经济学 经济
作者
Weijing Qi,Yongjian Wang,Yipeng Wang,Sha Huang,Cong Li,Haoyu Jin,Jinfan Zuo,Xin Cui,Ziqi Wei,Qing Guo,Jie Hu
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:23 (1) 被引量:11
标识
DOI:10.1186/s12967-025-06289-6
摘要

Postpartum depression (PPD) is a significant public health issue. This study aimed to develop and validate machine learning (ML) models using biopsychosocial predictors to predict the risk of PPD for perinatal women and to provide several risk assessment tools for the early detection of PPD. Candidate predictors, including history of mental illness and demographic, psychosocial, and physiological factors, were obtained from 1138 perinatal women between August 2021 and August 2022. The primary outcome of PPD was measured with the Edinburgh Postnatal Depression Scale at 6 weeks postpartum. Seven feature selection methods and six ML algorithms were employed to develop models, and their prediction performances were compared. A total of 11 potential predictive factors associated with PPD were identified and subsequently used to construct prenatal and postpartum predictive models for PPD. The cross-validation results showed that the models built on logistic regression (LR) [area under the curve (AUC): 0.801, 0.858] and artificial neural network (ANN) (AUC: 0.787, 0.844) algorithms exhibited the best prediction performance. In contrast to the prenatal models, the addition of postpartum predictors (primary caregiver and mother-in-law's care) remarkably improved the predictive performance of the postpartum models. The risk-stratification score, the nomogram, and the Shapley additive explanation were used to visualize and interpret the risk prediction model for predicting PPD in the early stage. The LR and ANN models achieved the best predictive performances. Applying these models and risk assessment tools to early predict and screen PPD has several implications for public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雀跃发布了新的文献求助20
1秒前
赵yy应助无言采纳,获得10
1秒前
温暖白昼完成签到,获得积分10
2秒前
2秒前
搜集达人应助隐形元绿采纳,获得10
2秒前
研友_VZG7GZ应助型男采纳,获得10
2秒前
2秒前
2秒前
思源应助小巧的风华采纳,获得10
2秒前
2秒前
SuperZzz发布了新的文献求助10
3秒前
NexusExplorer应助view采纳,获得10
3秒前
88888888完成签到,获得积分10
3秒前
3秒前
活泼的飞扬完成签到,获得积分10
4秒前
4秒前
妖精完成签到 ,获得积分10
5秒前
5秒前
6秒前
怕黑的班完成签到,获得积分10
7秒前
李健的小迷弟应助momo采纳,获得10
8秒前
风趣的鸡翅完成签到,获得积分10
8秒前
Bearbiscuit完成签到,获得积分10
8秒前
阿良发布了新的文献求助10
8秒前
负责的方盒完成签到,获得积分10
8秒前
xmy发布了新的文献求助10
8秒前
9秒前
小蚂蚁完成签到 ,获得积分10
9秒前
驭风而舞关注了科研通微信公众号
9秒前
gtx完成签到 ,获得积分10
10秒前
zhangjiashu发布了新的文献求助150
10秒前
10秒前
深情安青应助UUM采纳,获得30
10秒前
灯座发布了新的文献求助10
11秒前
超级水壶完成签到 ,获得积分10
11秒前
张环完成签到,获得积分10
11秒前
肖潇雨歇发布了新的文献求助10
11秒前
wangerer完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182