Prediction of postpartum depression in women: development and validation of multiple machine learning models

产后抑郁症 萧条(经济学) 计算机科学 机器学习 医学 人工智能 怀孕 生物 遗传学 宏观经济学 经济
作者
Weijing Qi,Yongjian Wang,Yipeng Wang,Sha Huang,Cong Li,Haoyu Jin,Jinfan Zuo,Xin Cui,Ziqi Wei,Qing Guo,Jie Hu
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:23 (1): 291-291 被引量:15
标识
DOI:10.1186/s12967-025-06289-6
摘要

Postpartum depression (PPD) is a significant public health issue. This study aimed to develop and validate machine learning (ML) models using biopsychosocial predictors to predict the risk of PPD for perinatal women and to provide several risk assessment tools for the early detection of PPD. Candidate predictors, including history of mental illness and demographic, psychosocial, and physiological factors, were obtained from 1138 perinatal women between August 2021 and August 2022. The primary outcome of PPD was measured with the Edinburgh Postnatal Depression Scale at 6 weeks postpartum. Seven feature selection methods and six ML algorithms were employed to develop models, and their prediction performances were compared. A total of 11 potential predictive factors associated with PPD were identified and subsequently used to construct prenatal and postpartum predictive models for PPD. The cross-validation results showed that the models built on logistic regression (LR) [area under the curve (AUC): 0.801, 0.858] and artificial neural network (ANN) (AUC: 0.787, 0.844) algorithms exhibited the best prediction performance. In contrast to the prenatal models, the addition of postpartum predictors (primary caregiver and mother-in-law's care) remarkably improved the predictive performance of the postpartum models. The risk-stratification score, the nomogram, and the Shapley additive explanation were used to visualize and interpret the risk prediction model for predicting PPD in the early stage. The LR and ANN models achieved the best predictive performances. Applying these models and risk assessment tools to early predict and screen PPD has several implications for public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小无发布了新的文献求助10
刚刚
情怀应助un采纳,获得10
1秒前
wnx发布了新的文献求助10
1秒前
七仙女完成签到,获得积分10
1秒前
Cyrus应助刻苦秋尽采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Any发布了新的文献求助30
3秒前
3秒前
annabelle发布了新的文献求助10
3秒前
Ava应助strive采纳,获得10
4秒前
4秒前
wlffjessica完成签到,获得积分10
4秒前
楠楠DAYTOY发布了新的文献求助10
4秒前
FashionBoy应助LK8669090采纳,获得10
5秒前
科研小白完成签到,获得积分10
5秒前
6秒前
陈陈陈发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
闪闪的音响完成签到,获得积分10
8秒前
8秒前
SilentStorm发布了新的文献求助10
8秒前
小刘马完成签到,获得积分10
8秒前
AU完成签到,获得积分10
8秒前
共享精神应助争取发二区采纳,获得10
9秒前
9秒前
9秒前
yannick发布了新的文献求助10
9秒前
9秒前
10秒前
无情的宛儿完成签到,获得积分10
11秒前
热心芯发布了新的文献求助10
12秒前
现代雅香发布了新的文献求助30
12秒前
小肥鱼完成签到,获得积分10
13秒前
SilentStorm完成签到,获得积分10
13秒前
14秒前
英俊的铭应助独特亦旋采纳,获得10
14秒前
evelyn发布了新的文献求助10
14秒前
wzc发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656681
求助须知:如何正确求助?哪些是违规求助? 4804855
关于积分的说明 15076883
捐赠科研通 4814887
什么是DOI,文献DOI怎么找? 2576120
邀请新用户注册赠送积分活动 1531370
关于科研通互助平台的介绍 1489958