亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI-Based Mathematical Modeling to Predict the Response of I-SPY 2 Patients with Breast Cancer to Neoadjuvant Therapy

乳腺癌 新辅助治疗 医学 概化理论 癌症 逻辑回归 一致性 肿瘤科 接收机工作特性 一致相关系数 内科学 统计 数学
作者
Reshmi J. S. Patel,Chengyue Wu,Casey E. Stowers,Rania M. Mohamed,Jingfei Ma,Gaiane M. Rauch,Thomas E. Yankeelov
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:31 (22): 4846-4856
标识
DOI:10.1158/1078-0432.ccr-25-0668
摘要

Abstract Purpose: We seek to establish the generalizability of our biology-based mathematical model in accurately predicting the response of patients with locally advanced breast cancer to neoadjuvant therapy (NAT). Experimental Design: Ninety-one patients (representing three subtypes of locally advanced breast cancer) from 10 Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2 (I-SPY 2) clinical trial sites received quantitative MRI before (V1), 3 weeks into (V2), and after completion of (V3) the first 12-week standard-of-care or experimental NAT course. We used these data to calibrate, on a patient-specific basis, our previously developed biology-based mathematical model describing the spatiotemporal change in the number of tumor cells. After calibrating the mathematical model to the V1 and V2 MRI data, the calibrated model predicted the patient-specific tumor status at V3 by explicitly accounting for tumor cell movement (constrained by the mechanical properties of the surrounding tissue), proliferation, and death due to treatment. Results: The concordance correlation coefficient between the observed and predicted tumor change from V1 to V3 was 0.94 for total cellularity and 0.91 for volume. A logistic regression model of predicted tumor volume metrics from V1 to V3 differentiated pathologic complete response from nonpathologic complete response patients with an area under the ROC curve of 0.78. Conclusions: Our tumor forecasting pipeline can accurately predict tumor status after an NAT course—on a patient-specific basis, without a training dataset—using “real-world” MRI data obtained from a multi-subtype, multisite clinical trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
gexzygg应助科研通管家采纳,获得10
4秒前
shhoing应助科研通管家采纳,获得10
4秒前
李健应助总是很简单采纳,获得10
23秒前
草木完成签到 ,获得积分20
26秒前
asd1576562308完成签到 ,获得积分10
33秒前
BowieHuang应助达不溜搽采纳,获得10
1分钟前
绿野仙踪完成签到 ,获得积分10
1分钟前
1分钟前
弃笔从文发布了新的文献求助10
1分钟前
弃笔从文完成签到,获得积分20
1分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
天天快乐应助调皮千兰采纳,获得10
2分钟前
何为完成签到 ,获得积分0
2分钟前
2分钟前
调皮千兰发布了新的文献求助10
2分钟前
2分钟前
jinghong完成签到 ,获得积分10
2分钟前
彭于晏应助爱蹦跶的废物采纳,获得10
2分钟前
sunfield2014发布了新的文献求助10
2分钟前
3分钟前
BowieHuang应助调皮千兰采纳,获得10
3分钟前
3分钟前
完美世界应助雨晨采纳,获得10
3分钟前
3分钟前
Owen应助季刘杰采纳,获得10
3分钟前
3分钟前
季刘杰发布了新的文献求助10
3分钟前
ding应助调皮千兰采纳,获得10
3分钟前
小马甲应助渡己。采纳,获得10
3分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561453
求助须知:如何正确求助?哪些是违规求助? 4646560
关于积分的说明 14678633
捐赠科研通 4587843
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461454