MRI-based mathematical modeling to predict the response of I-SPY 2 breast cancer patients to neoadjuvant therapy

乳腺癌 新辅助治疗 医学 癌症 肿瘤科 完全响应 放射科 内科学 化疗
作者
Reshmi J. S. Patel,Chengyue Wu,Casey Stowers,Rania M. Mohamed,Jingfei Ma,Gaiane M. Rauch,Thomas E. Yankeelov
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/1078-0432.ccr-25-0668
摘要

Abstract Purpose: We seek to establish the generalizability of our biology-based mathematical model in accurately predicting the response of locally advanced breast cancer (LABC) patients to neoadjuvant therapy (NAT). Patients and Methods: 91 patients (representing three subtypes of LABC) from 10 I-SPY 2 clinical trial sites received quantitative MRI before (V1), three weeks into (V2), and after completion of (V3) the first 12-week standard-of-care or experimental NAT course. We used these data to calibrate, on a patient-specific basis, our previously developed biology-based mathematical model describing the spatiotemporal change in the number of tumor cells. After calibrating the mathematical model to the V1 and V2 MRI data, the calibrated model predicted the patient-specific tumor status at V3 by explicitly accounting for tumor cell movement (constrained by the mechanical properties of the surrounding tissue), proliferation, and death due to treatment. Results: The concordance correlation coefficient between the observed and predicted tumor change from V1 to V3 was 0.94 for total cellularity and 0.91 for volume. A logistic regression model of predicted tumor volume metrics from V1 to V3 differentiated pCR from non-pCR patients with an area under the receiver operating characteristic curve of 0.78. Conclusions: Our tumor forecasting pipeline can accurately predict tumor status after an NAT course—on a patient-specific basis, without a training dataset—using “real-world” MRI data obtained from a multi-subtype, multi-site clinical trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
科研通AI6应助学者采纳,获得10
3秒前
4秒前
5秒前
寒树完成签到,获得积分10
5秒前
sln完成签到,获得积分10
5秒前
Eraser完成签到,获得积分10
7秒前
寒树发布了新的文献求助10
8秒前
vv完成签到 ,获得积分20
9秒前
10秒前
奋斗凌珍发布了新的文献求助10
11秒前
ddp完成签到 ,获得积分10
11秒前
12秒前
汉堡包应助寒树采纳,获得10
13秒前
13秒前
33发布了新的文献求助10
14秒前
jlj发布了新的文献求助10
14秒前
kook应助e746700020采纳,获得50
14秒前
15秒前
李健应助无事东风采纳,获得10
15秒前
shaheen完成签到,获得积分20
15秒前
田様应助哇奥采纳,获得10
16秒前
上官若男应助莹仔采纳,获得10
17秒前
Wangruojin_发布了新的文献求助10
17秒前
奋斗凌珍完成签到,获得积分10
17秒前
18秒前
小陶发布了新的文献求助10
19秒前
曹能豪发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
Owen应助精明梦柏采纳,获得10
23秒前
陌日遗迹完成签到,获得积分10
23秒前
顾矜应助lucky李采纳,获得10
23秒前
香蕉觅云应助研猫采纳,获得10
24秒前
miracle发布了新的文献求助20
24秒前
QTQ发布了新的文献求助10
26秒前
knight关注了科研通微信公众号
26秒前
机灵数据线完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848835
求助须知:如何正确求助?哪些是违规求助? 4148391
关于积分的说明 12849876
捐赠科研通 3895704
什么是DOI,文献DOI怎么找? 2141162
邀请新用户注册赠送积分活动 1160862
关于科研通互助平台的介绍 1060915