亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An automated machine-learning model for prognostic risk stratification of intermediate-stage hepatocellular carcinoma after transarterial chemoembolization

医学 队列 肝细胞癌 内科学 回顾性队列研究 阶段(地层学) 预测模型 队列研究 病历 肿瘤科 总体生存率 生物 古生物学
作者
Chao An,Mengxuan Zuo,Wang Li,Peihong Wu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (9): 6200-6210
标识
DOI:10.1097/js9.0000000000002719
摘要

Background: Currently, there is still a lack of noninvasive, automated, and accurate machine-learning (ML) models for prognostic risk stratification of intermediate-stage hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Purpose: We aimed to develop an ML model for prognostic risk stratification of intermediate-stage HCC after TACE to assist physicians in decision-making. Methods: Between April 2008 and October 2022, consecutive patients with intermediate-stage HCC undergoing initial conventional TACE were retrospectively enrolled from seven tertiary hospitals. A system utilizing natural language processing technology was used to extract clinical information from electronic medical records to develop the ML models. The primary outcomes were 2-year HCC-related death and cancer-related survival (CRS, defined as the interval from initial TACE to either HCC-related death or last follow-up). The ML models’ performance and their comparison with various biomarkers were assessed. Results: A total of 4426 eligible patients were included (3906 males, 520 females; median age, 54 years ± 11 [standard deviation]; 2667 in the training cohort, 667 in the internal test cohort, and 1092 patients in the external test cohort). Six ML models were developed, with the XGBoost model demonstrating the best predictive performance. It achieved an AUC of 0.842 (95% CI, 0.827–0.857) in the training cohort, 0.815 (95% CI, 0.783–0.847) in the internal test cohort, and 0.798 (95% CI, 0.771–0.824) in the external test cohort. Among high-risk patients stratified by the XGBoost model, those who received TACE combined with microwave ablation had significantly higher cumulative CRS rates than those treated with TACE alone. Conclusion: We developed a noninvasive, automated, and accurate ML model, the XGBoost model, with robust performance in prognostic risk stratification for intermediate-stage HCC following TACE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunyt发布了新的文献求助10
13秒前
19秒前
sunyt完成签到,获得积分10
19秒前
竹筏过海完成签到,获得积分0
26秒前
So完成签到 ,获得积分10
27秒前
28秒前
冷艳的语雪完成签到 ,获得积分10
38秒前
Criminology34应助科研通管家采纳,获得30
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
mashibeo应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
39秒前
46秒前
46秒前
今后应助Lumosii采纳,获得10
51秒前
情怀应助hzk采纳,获得10
56秒前
JG完成签到 ,获得积分10
56秒前
59秒前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
Cyris完成签到,获得积分10
1分钟前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
不知名的呆毛完成签到,获得积分10
1分钟前
今后应助sxmt123456789采纳,获得10
1分钟前
1分钟前
nanana完成签到 ,获得积分10
1分钟前
allover完成签到,获得积分10
1分钟前
在水一方应助Jiang采纳,获得10
1分钟前
hzk发布了新的文献求助10
1分钟前
1分钟前
叮叮当关注了科研通微信公众号
1分钟前
慕青应助开拖拉机的芍药采纳,获得10
1分钟前
nidd0113完成签到 ,获得积分10
1分钟前
1分钟前
坚守完成签到 ,获得积分10
2分钟前
2分钟前
路灯下的小伙完成签到,获得积分10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454743
求助须知:如何正确求助?哪些是违规求助? 4562127
关于积分的说明 14284753
捐赠科研通 4485948
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447784
关于科研通互助平台的介绍 1422985