Applications of machine learning for peripheral artery disease diagnosis and management: A systematic review

机器学习 人工智能 随机森林 计算机科学 卷积神经网络 聚类分析 人工神经网络 疾病 医学 深度学习 病理
作者
Negar Aant,Masoud Arabbeiki,Mohammad Reza Niroomand
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:196: 110744-110744
标识
DOI:10.1016/j.compbiomed.2025.110744
摘要

Peripheral artery disease (PAD) is a chronic condition caused by atherosclerosis, leading to arterial narrowing and obstruction, primarily in the lower extremities. This results in reduced blood flow and increases the risk of loss of limbs and mortality. Early diagnosis is essential for preventing complications and improving patient outcomes. Machine learning (ML), a subset of artificial intelligence, provides a non-invasive and efficient approach not only for diagnosing PAD but also for guiding management strategies by analyzing large datasets and identifying complex patterns. This systematic review explores the application of ML algorithms in PAD diagnosis and management, focusing on data types, whether numerical or non-numerical, features, performance metrics, software tools, and predicted outcomes. A comprehensive literature search in PubMed, Scopus, and Web of Science identified 30 relevant studies published between 2014 and 2024. The reviewed studies span various machine learning domains such as regression, classification, and clustering. These studies have utilized different techniques, including neural networks, both fully connected and convolutional, ensemble learning, and deep learning. A risk of bias assessment was performed across five domains to evaluate study reliability. Findings indicate that clinical records were the primary data source in approximately 50 % of studies. Random forest was the most frequently used algorithm for PAD analysis. ML models were applied to both diagnostic and risk assessment datasets, demonstrating their versatility. The overall risk of bias assessment revealed that 50 % of studies exhibited low risk across all domains. These findings highlight the potential of ML in enhancing PAD diagnosis and management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junjie发布了新的文献求助10
刚刚
假装有昵称完成签到,获得积分10
1秒前
清河剑客完成签到,获得积分10
1秒前
宇文雨文完成签到 ,获得积分10
1秒前
bismarck7完成签到,获得积分10
1秒前
桃源theshy完成签到,获得积分20
1秒前
认真柠檬完成签到,获得积分10
1秒前
科研通AI5应助00采纳,获得10
2秒前
隐形荟完成签到 ,获得积分10
2秒前
自觉南风发布了新的文献求助10
2秒前
小王完成签到,获得积分10
2秒前
15832369693应助蓝调爱科研采纳,获得10
3秒前
华仔应助zzz采纳,获得10
3秒前
aloha完成签到,获得积分20
4秒前
Lucas应助cty采纳,获得10
4秒前
JiaY发布了新的文献求助10
4秒前
黑裤子熊完成签到,获得积分10
4秒前
刘大可完成签到,获得积分10
4秒前
Hastur00完成签到,获得积分10
5秒前
5秒前
调皮初蓝完成签到 ,获得积分10
5秒前
6秒前
SYLVIA应助无情白羊采纳,获得10
6秒前
6秒前
所得所完成签到,获得积分10
6秒前
神奇宝贝完成签到,获得积分10
8秒前
科研通AI5应助LILI采纳,获得10
8秒前
古月发布了新的文献求助30
9秒前
秦艽完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
无花果应助不停采纳,获得10
10秒前
液晶屏99完成签到,获得积分10
10秒前
10秒前
苗条砖家完成签到,获得积分10
10秒前
zhanwenlin完成签到 ,获得积分10
10秒前
Lermta完成签到,获得积分10
11秒前
独特海白完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345865
求助须知:如何正确求助?哪些是违规求助? 3852308
关于积分的说明 12024265
捐赠科研通 3493918
什么是DOI,文献DOI怎么找? 1917154
邀请新用户注册赠送积分活动 960143
科研通“疑难数据库(出版商)”最低求助积分说明 860141