恒化器
食物链
平稳分布
消光(光学矿物学)
数学
遍历理论
变量(数学)
随机建模
李雅普诺夫函数
理论(学习稳定性)
应用数学
马尔可夫链
统计物理学
生物系统
细菌
生态学
生物
计算机科学
统计
物理
数学分析
遗传学
古生物学
非线性系统
量子力学
机器学习
作者
XIAOJUAN LIU,Shulin Sun
标识
DOI:10.1142/s0218339023500225
摘要
In this paper, we consider a stochastic food chain chemostat model with variable yields. First, we prove the stochastic model has a unique global positive solution. Second, by employing suitable Lyapunov functions, Itô[Formula: see text] formula and some other important inequalities, the existence of a unique ergodic stationary distribution of a stochastic food chain chemostat model is researched, which can help us better understand the statistical characteristics of stochastic food chain chemostat models. Second, we investigate the extinction of the microorganism and the bacteria. Moreover, the case of extinction for bacteria but persistence for microbial species is considered. Finally, some numerical simulations are carried out to illustrate our theoretical results and the influence of the variable yields on the microorganism and the bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI