Identification and analysis of seashells in sea sand using computer vision and machine learning

经济短缺 交叉口(航空) 人工智能 材料科学 分割 模式识别(心理学) 计算机科学 地质学 矿物学 地理 地图学 语言学 哲学 政府(语言学)
作者
Tiejun Liu,Yutong Ju,Hanxiong Lyu,Qinglin Zhuo,Hanjie Qian,Ye Li
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:18: e02121-e02121 被引量:7
标识
DOI:10.1016/j.cscm.2023.e02121
摘要

Due to the shortage and high price of river sand, the use of sea sand as a fine aggregate for concrete is gradually being considered. Seashells are fragile and have an undesirable effect on the compressive strength of concrete. However, the exact effect of seashells is still unclear and quality control of concrete is not possible since there are no effective methods for seashell characterization. In this study, we investigated the feasibility of segmenting photos of sea sand and analyzing seashells by using three typical machine learning methods, i.e., PointRend, DeepLab v3 +, and Weka. A new imaging method was proposed to avoid overlapping sea sand particles and preserve the smallest particles with sufficient resolution. A total of 960 photos were captured, and 2199 seashells were labeled, of which 80% and 20% were used for model training and validation, respectively. As a result, PointRend could efficiently recognize seashells with different shapes, sizes, and surface textures. It also had the highest Intersection over Union (IOU) and pixel accuracy (PA) scores due to the well-defined boundaries of the seashells, followed by DeepLab v3 + and Weka. From the segmentation results, the size of the seashells showed a left-skewed distribution with a mean diameter of 0.747 mm, which was smaller than the size of the sea sand. There was also considerable variation in the irregularity and roundness of the seashells. As the size of the seashells increased, their shapes became more irregular. The automated analysis of the seashells can provide further insights into the effect of shells on the properties of concrete.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiu-er发布了新的文献求助10
1秒前
hahahaha发布了新的文献求助10
1秒前
渝安完成签到,获得积分10
1秒前
嘻嘻发布了新的文献求助20
4秒前
华仔应助Kriten采纳,获得10
5秒前
郁浅应助kk采纳,获得10
5秒前
Xeno发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
xiu-er完成签到,获得积分10
7秒前
7秒前
Orange应助米酒汤圆采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
大个应助潇潇采纳,获得10
13秒前
14秒前
15秒前
Lucas应助伍六七采纳,获得10
16秒前
16秒前
彪壮的机器猫完成签到,获得积分10
16秒前
求助人员发布了新的文献求助10
16秒前
Kriten发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
GuMingyang完成签到,获得积分10
19秒前
凤尾鱼发布了新的文献求助10
21秒前
21秒前
宋文祥发布了新的文献求助10
22秒前
科研通AI6应助海阔天空采纳,获得30
23秒前
米酒汤圆发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
25秒前
XHT完成签到,获得积分10
25秒前
26秒前
21发布了新的文献求助10
26秒前
科研通AI6应助周浩宇采纳,获得10
27秒前
顾矜应助小猪猪采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532485
求助须知:如何正确求助?哪些是违规求助? 4621225
关于积分的说明 14577361
捐赠科研通 4561100
什么是DOI,文献DOI怎么找? 2499151
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450357