Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast MRI with Parallel Imaging Using Multi-view Information

鉴别器 计算机科学 发电机(电路理论) 迭代重建 人工智能 GSM演进的增强数据速率 深度学习 残余物 过程(计算) 计算机视觉 算法 探测器 电信 功率(物理) 物理 量子力学 操作系统
作者
Jiahao Huang,Weiping Ding,Jun Lv,Jingwen Yang,Hao Dong,Javier Del Ser,Jun Xia,Tiaojuan Ren,Stephen T.C. Wong,Guang Yang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2112.05758
摘要

In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better reconstruction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the demand of faster processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
可靠面包发布了新的文献求助10
4秒前
罗明明完成签到 ,获得积分10
6秒前
传统的萝发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
冰魂应助科研通管家采纳,获得10
8秒前
安紊完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
开心元霜完成签到 ,获得积分10
9秒前
10秒前
12秒前
虚心的幻巧完成签到,获得积分10
12秒前
星辰大海应助虚心的幻巧采纳,获得10
16秒前
KaK发布了新的文献求助10
18秒前
大个应助YIFEI采纳,获得10
19秒前
zhang2001完成签到,获得积分10
20秒前
无聊的纸飞机完成签到,获得积分10
20秒前
苹果果汁完成签到,获得积分10
21秒前
fsznc完成签到 ,获得积分0
21秒前
23秒前
科研通AI2S应助晓雯采纳,获得10
23秒前
催化剂发布了新的文献求助10
27秒前
小二郎应助可靠面包采纳,获得10
30秒前
wanci应助一北采纳,获得10
30秒前
所所应助KaK采纳,获得10
31秒前
怡然的嫣然完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
cmd完成签到,获得积分10
38秒前
英俊的铭应助催化剂采纳,获得10
38秒前
纯情的远山完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385