TensorFormer: A Tensor-Based Multimodal Transformer for Multimodal Sentiment Analysis and Depression Detection

模式 计算机科学 变压器 人工智能 情绪分析 机器学习 工程类 社会科学 电压 社会学 电气工程
作者
Hao Sun,Yen‐Wei Chen,Lanfen Lin
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2776-2786 被引量:23
标识
DOI:10.1109/taffc.2022.3233070
摘要

Sentiment analysis is an important research field aiming to extract and fuse sentimental information from human utterances. Due to the diversity of human sentiment, analyzing from multiple modalities is usually more accurate than from a single modality. To complement the information between related modalities, one effective approach is performing cross-modality interactions. Recently, Transformer-based frameworks have shown a strong ability to capture long-range dependencies, leading to the introduction of several Transformer-based approaches for multimodal processing. However, due to the built-in attention mechanism of the Transformers, only two modalities can be engaged at once. As a result, the complementary information flow in these Transformer-based techniques is partial and constrained. To mitigate this, we propose, TensorFormer, a tensor-based multimodal Transformer framework that takes into account all relevant modalities for interactions. More precisely, we first construct a tensor utilizing the features extracted from each modality, assuming one modality is the target while the remaining tensors serve as the sources. We can generate the corresponding interacted features by calculating source-target attention. This strategy interacts with all involved modalities and generates complementing global information. Experiments on multimodal sentiment analysis benchmark datasets demonstrated the effectiveness of TensorFormer. In addition, we also evaluate TensorFormer in another related area: depression detection and the results reveal significant improvements when compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助合适以寒采纳,获得10
1秒前
雪白胡萝卜完成签到,获得积分10
2秒前
情怀应助比利时光采纳,获得30
4秒前
4秒前
shiizii应助ludwig采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
xi发布了新的文献求助10
7秒前
Mint发布了新的文献求助10
9秒前
无私的芹应助科研通管家采纳,获得10
9秒前
无私的芹应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
无私的芹应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
欢呼山雁发布了新的文献求助10
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
美少叔叔发布了新的文献求助10
11秒前
11秒前
11秒前
zoiaii完成签到,获得积分10
11秒前
若兰完成签到,获得积分10
11秒前
别闹闹发布了新的文献求助10
12秒前
吱吱吱发布了新的文献求助10
12秒前
小二郎应助星宿陨采纳,获得10
12秒前
xzx发布了新的文献求助10
13秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026908
求助须知:如何正确求助?哪些是违规求助? 3566421
关于积分的说明 11351887
捐赠科研通 3297530
什么是DOI,文献DOI怎么找? 1816053
邀请新用户注册赠送积分活动 890491
科研通“疑难数据库(出版商)”最低求助积分说明 813656