Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries

材料科学 阴极 涂层 电解质 化学工程 溶解 介电谱 锂(药物) 电化学 三元运算 离子 复合材料 电极 化学 物理化学 医学 有机化学 内分泌学 计算机科学 工程类 程序设计语言
作者
Hexin Liu,Xiuli Zhao,Yongjia Xie,Shuting Luo,Zhenyu Wang,Lingyun Zhu,Xing Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 55491-55502 被引量:2
标识
DOI:10.1021/acsami.2c14235
摘要

Developments in electric vehicles and mobile electronic devices are promoting the demand for lithium-ion batteries with higher capacity and longer lifetime. The performances of lithium-ion batteries are crucially affected by cathode materials, among which ternary cathode materials are the most competitive option with the advantages of high capacity, safety, and cost-effectiveness. However, although high-nickel ternary cathode materials can achieve relatively high specific capacity, they generally have unsatisfactory stability during long-term cycling. In this study, the microscopic mechanisms of the cathode failure and the principle of coating modification in lithium-ion batteries have been comprehensively examined. It has been revealed that the irreversible capacity fading is mainly attributed to the interface chemical reaction, which reduces the transition-metal valence states and generates undesired disordered rock-salt phases. This structural phase transformation at the interface induces the dissolution of transition metals and results in irreversible capacity loss of the cathode. To restrain the occurrence of this process, a LiNbO3 coating-modified single-crystal LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has been prepared. The electrochemical properties as well as the microstructural evolution of the cathode-electrolyte interface during cycling of both the uncoated and coated samples have been comprehensively characterized and compared through impedance spectroscopy testing, SEM-EDX, STEM, and EELS characterization. Additionally, molecular dynamics simulation results confirmed that LiNbO3 coating can effectively inhibit the dissolution of transition metals while providing stable lithium-ion channels. The experimental results also indicate that the coating modification can effectively improve the cycling stability of the NCM811, with the capacity retention rate for 500 cycles increasing from 19% to 70%. This study is helpful to deepen the understanding of the capacity fading mechanisms, and the coating method is effective at maintaining the structural stability and improving the cycle life of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过梦竹完成签到,获得积分10
3秒前
斯文败类应助wash采纳,获得10
4秒前
LOMO发布了新的文献求助10
4秒前
普里兹盐发布了新的文献求助10
4秒前
bkagyin应助小垃圾采纳,获得10
5秒前
明亮书南完成签到,获得积分10
9秒前
13秒前
14秒前
kid完成签到,获得积分10
16秒前
eno完成签到,获得积分10
17秒前
bob的美腿发布了新的文献求助10
17秒前
Rolo完成签到,获得积分10
18秒前
19秒前
21秒前
汉堡包应助LOMO采纳,获得10
26秒前
赘婿应助宝宝熊的熊宝宝采纳,获得10
27秒前
德尔塔捱斯关注了科研通微信公众号
33秒前
sherryry完成签到,获得积分10
34秒前
JAJ完成签到 ,获得积分10
36秒前
赘婿应助绿地土狗采纳,获得10
36秒前
Angleli完成签到,获得积分10
36秒前
Zzzz完成签到,获得积分20
40秒前
42秒前
小胡不爱学习完成签到,获得积分10
42秒前
45秒前
48秒前
绿地土狗发布了新的文献求助10
48秒前
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
娟娟完成签到 ,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
完美世界应助研友_enPl9n采纳,获得20
50秒前
大力访云发布了新的文献求助10
51秒前
完美的妙芹完成签到,获得积分10
51秒前
Ching完成签到 ,获得积分10
51秒前
52秒前
Tonson完成签到 ,获得积分10
52秒前
高分求助中
Thermodynamic data for steelmaking 3000
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
Electrochemistry 500
藍からはじまる蛍光性トリプタンスリン研究 400
Cardiology: Board and Certification Review 400
A History of the Global Economy 350
[Lambert-Eaton syndrome without calcium channel autoantibodies] 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2365841
求助须知:如何正确求助?哪些是违规求助? 2074652
关于积分的说明 5188249
捐赠科研通 1801938
什么是DOI,文献DOI怎么找? 899949
版权声明 557924
科研通“疑难数据库(出版商)”最低求助积分说明 480257