清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries

材料科学 阴极 涂层 电解质 化学工程 溶解 介电谱 锂(药物) 电化学 三元运算 离子 复合材料 电极 化学 物理化学 内分泌学 有机化学 工程类 程序设计语言 医学 计算机科学
作者
Hexin Liu,Xiayan Zhao,Yongjia Xie,Shuting Luo,Zhenyu Wang,Lingyun Zhu,Xing Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (50): 55491-55502 被引量:7
标识
DOI:10.1021/acsami.2c14235
摘要

Developments in electric vehicles and mobile electronic devices are promoting the demand for lithium-ion batteries with higher capacity and longer lifetime. The performances of lithium-ion batteries are crucially affected by cathode materials, among which ternary cathode materials are the most competitive option with the advantages of high capacity, safety, and cost-effectiveness. However, although high-nickel ternary cathode materials can achieve relatively high specific capacity, they generally have unsatisfactory stability during long-term cycling. In this study, the microscopic mechanisms of the cathode failure and the principle of coating modification in lithium-ion batteries have been comprehensively examined. It has been revealed that the irreversible capacity fading is mainly attributed to the interface chemical reaction, which reduces the transition-metal valence states and generates undesired disordered rock-salt phases. This structural phase transformation at the interface induces the dissolution of transition metals and results in irreversible capacity loss of the cathode. To restrain the occurrence of this process, a LiNbO3 coating-modified single-crystal LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has been prepared. The electrochemical properties as well as the microstructural evolution of the cathode–electrolyte interface during cycling of both the uncoated and coated samples have been comprehensively characterized and compared through impedance spectroscopy testing, SEM-EDX, STEM, and EELS characterization. Additionally, molecular dynamics simulation results confirmed that LiNbO3 coating can effectively inhibit the dissolution of transition metals while providing stable lithium-ion channels. The experimental results also indicate that the coating modification can effectively improve the cycling stability of the NCM811, with the capacity retention rate for 500 cycles increasing from 19% to 70%. This study is helpful to deepen the understanding of the capacity fading mechanisms, and the coating method is effective at maintaining the structural stability and improving the cycle life of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助科研通管家采纳,获得30
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
9秒前
13秒前
ds发布了新的文献求助10
14秒前
SCI的芷蝶完成签到 ,获得积分10
15秒前
Lillianzhu1完成签到,获得积分10
23秒前
24秒前
33秒前
38秒前
大水完成签到 ,获得积分10
49秒前
tuzi完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
51秒前
MISA完成签到 ,获得积分10
56秒前
乐正怡完成签到 ,获得积分0
1分钟前
威武画板完成签到 ,获得积分10
1分钟前
婉莹完成签到 ,获得积分0
1分钟前
快去爬山完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
害羞便当完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小zz完成签到 ,获得积分10
2分钟前
铜豌豆完成签到 ,获得积分10
2分钟前
qinxy完成签到 ,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
20240901完成签到,获得积分10
2分钟前
fabea完成签到,获得积分10
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
badgerwithfisher完成签到,获得积分10
2分钟前
车访枫完成签到 ,获得积分10
2分钟前
bono完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
xun完成签到,获得积分10
2分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892479
求助须知:如何正确求助?哪些是违规求助? 3435216
关于积分的说明 10791630
捐赠科研通 3160194
什么是DOI,文献DOI怎么找? 1745422
邀请新用户注册赠送积分活动 842891
科研通“疑难数据库(出版商)”最低求助积分说明 786929