已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis

医学 柯布角 科布 脊柱侧凸 畸形 特发性脊柱侧凸 相关系数 撑杆 口腔正畸科 算法 人工智能 卷积神经网络 机器学习 外科 计算机科学 结构工程 工程类 生物 遗传学
作者
Yoko Ishikawa,Terufumi Kokabu,Katsuhisa Yamada,Yoichi M. Ito,Hiroyuki Tachi,Hisataka Suzuki,Takashi Ohnishi,Tsutomu Endo,Daisuke Ukeba,Katsuro Ura,Masahiko Takahata,Norimasa Iwasaki,Hideki Sudo
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 499-499
标识
DOI:10.3390/jcm12020499
摘要

Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity. Early detection of deformity and timely intervention, such as brace treatment, can help inhibit progressive changes. A three-dimensional (3D) depth-sensor imaging system with a convolutional neural network was previously developed to predict the Cobb angle. The purpose of the present study was to (1) evaluate the performance of the deep learning algorithm (DLA) in predicting the Cobb angle and (2) assess the predictive ability depending on the presence or absence of clothing in a prospective analysis. We included 100 subjects with suspected AIS. The correlation coefficient between the actual and predicted Cobb angles was 0.87, and the mean absolute error and root mean square error were 4.7° and 6.0°, respectively, for Adam’s forward bending without underwear. There were no significant differences in the correlation coefficients between the groups with and without underwear in the forward-bending posture. The performance of the DLA with a 3D depth sensor was validated using an independent external validation dataset. Because the psychological burden of children and adolescents on naked body imaging is an unignorable problem, scoliosis examination with underwear is a valuable alternative in clinics or schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助光盘行动采纳,获得10
1秒前
2秒前
Lingkoi发布了新的文献求助10
2秒前
TT完成签到,获得积分10
2秒前
舒适的秋尽完成签到,获得积分10
3秒前
不安夜蕾给不安夜蕾的求助进行了留言
5秒前
5秒前
大模型应助HZY采纳,获得10
6秒前
lulu完成签到 ,获得积分10
6秒前
科研通AI2S应助张紫宁采纳,获得10
6秒前
7秒前
知来者发布了新的文献求助10
8秒前
GR完成签到,获得积分10
9秒前
water完成签到,获得积分10
10秒前
12秒前
共享精神应助sdfsdf采纳,获得10
13秒前
科研通AI5应助李伊采纳,获得10
13秒前
wyx完成签到,获得积分10
14秒前
15秒前
自觉从云完成签到,获得积分10
16秒前
完美世界应助木木杨采纳,获得10
16秒前
18秒前
20秒前
21秒前
Jasper应助帅气老虎采纳,获得10
22秒前
25秒前
25秒前
lemonyu发布了新的文献求助10
25秒前
Diamond完成签到,获得积分10
25秒前
七慕凉应助heihei采纳,获得10
28秒前
30秒前
传奇3应助科研通管家采纳,获得20
31秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
科目三应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436