Comprehensive investigation of pathway enrichment methods for functional interpretation of LC–MS global metabolomics data

代谢组学 注释 计算机科学 计算生物学 水准点(测量) 代谢物 排名(信息检索) 数据挖掘 生物 生物信息学 人工智能 生物化学 大地测量学 地理
作者
Yao Lü,Zhiqiang Pang,Jianguo Xia
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:13
标识
DOI:10.1093/bib/bbac553
摘要

Global or untargeted metabolomics is widely used to comprehensively investigate metabolic profiles under various pathophysiological conditions such as inflammations, infections, responses to exposures or interactions with microbial communities. However, biological interpretation of global metabolomics data remains a daunting task. Recent years have seen growing applications of pathway enrichment analysis based on putative annotations of liquid chromatography coupled with mass spectrometry (LC-MS) peaks for functional interpretation of LC-MS-based global metabolomics data. However, due to intricate peak-metabolite and metabolite-pathway relationships, considerable variations are observed among results obtained using different approaches. There is an urgent need to benchmark these approaches to inform the best practices.We have conducted a benchmark study of common peak annotation approaches and pathway enrichment methods in current metabolomics studies. Representative approaches, including three peak annotation methods and four enrichment methods, were selected and benchmarked under different scenarios. Based on the results, we have provided a set of recommendations regarding peak annotation, ranking metrics and feature selection. The overall better performance was obtained for the mummichog approach. We have observed that a ~30% annotation rate is sufficient to achieve high recall (~90% based on mummichog), and using semi-annotated data improves functional interpretation. Based on the current platforms and enrichment methods, we further propose an identifiability index to indicate the possibility of a pathway being reliably identified. Finally, we evaluated all methods using 11 COVID-19 and 8 inflammatory bowel diseases (IBD) global metabolomics datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到 ,获得积分10
1秒前
3秒前
酷波er应助123采纳,获得30
3秒前
tianmeng发布了新的文献求助10
4秒前
shuyu完成签到,获得积分20
5秒前
5秒前
刘忙完成签到,获得积分10
6秒前
彭于晏应助babybao采纳,获得10
6秒前
不吃别夹完成签到,获得积分10
6秒前
hby发布了新的文献求助10
7秒前
8秒前
李健应助123采纳,获得10
8秒前
DDDD发布了新的文献求助30
9秒前
zeng发布了新的文献求助20
10秒前
不吃别夹发布了新的文献求助10
10秒前
阿文发布了新的文献求助20
14秒前
m方应助季夏十六采纳,获得10
17秒前
18秒前
19秒前
Xingkun_li完成签到 ,获得积分10
20秒前
科研通AI5应助一直很安静采纳,获得10
21秒前
21秒前
温柔的姿应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
wly9399375完成签到,获得积分10
23秒前
123发布了新的文献求助30
23秒前
24秒前
李某某发布了新的文献求助10
24秒前
wanci应助hby采纳,获得10
24秒前
Haterain完成签到 ,获得积分10
26秒前
脑洞疼应助于鹏采纳,获得10
27秒前
华仔应助钟爱采纳,获得10
27秒前
科研通AI5应助77采纳,获得10
29秒前
Alicia完成签到 ,获得积分10
29秒前
南风发布了新的文献求助10
31秒前
直率的钢铁侠完成签到,获得积分10
32秒前
boboking完成签到,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320