Multi-Relations Aware Network for In-the-Wild Facial Expression Recognition

人工智能 计算机科学 模式识别(心理学) 人工神经网络 突出 面部表情 变压器 空间关系 特征提取 面部识别系统 计算机视觉 工程类 电气工程 电压
作者
Dongliang Chen,Guihua Wen,Huihui Li,Rui Chen,Cheng Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3848-3859 被引量:6
标识
DOI:10.1109/tcsvt.2023.3234312
摘要

Facial expression recognition (FER) becomes more challenging in the wild due to unconstrained conditions, such as the different illumination, pose changes, and occlusion of the face. Current FER methods deploy the attention mechanism in deep neural networks to improve the performance. However, these models only capture the limited attention features and relationships. Thus this paper proposes a novel FER framework called multi-relations aware network (MRAN), which can focus on global and local attention features and learn the multi-level relationships among local regions, between global-local features and among different samples, to obtain efficient emotional features. Specifically, our method first imposes the spatial attention on both the whole face and local regions to simultaneously learn the global and local salient features. After that, a region relation transformer is deployed to capture the internal structure among local facial regions, and a global-local relation transformer is designed to learn the fusion relations between global features and local features for different facial expressions. Subsequently, a sample relation transformer is deployed to focus on intrinsic similarity relationship among training samples, which promotes invariant feature learning for each expression. Finally, a joint optimization strategy is designed to efficiently optimize the model. The conducted experimental results on in-the-wild databases show that our method obtains the superior performance compared to some state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江月年发布了新的文献求助10
刚刚
1秒前
2秒前
fancy完成签到,获得积分10
2秒前
2秒前
2秒前
una发布了新的文献求助10
2秒前
2秒前
2秒前
sam完成签到,获得积分10
2秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
Emma发布了新的文献求助10
4秒前
Ayrin完成签到 ,获得积分20
4秒前
bkxsbac.ka发布了新的文献求助10
5秒前
6秒前
6秒前
李爱国应助姜汁采纳,获得10
7秒前
cc发布了新的文献求助10
7秒前
7秒前
含糊完成签到 ,获得积分10
7秒前
chenhua5460完成签到,获得积分20
7秒前
豆包发布了新的文献求助10
7秒前
8秒前
cc发布了新的文献求助10
8秒前
LJR发布了新的文献求助10
8秒前
冰魂应助aprise采纳,获得10
8秒前
sam发布了新的文献求助20
8秒前
zw发布了新的文献求助10
8秒前
8秒前
8秒前
是拿铁吖发布了新的文献求助10
9秒前
卡卡龍特发布了新的文献求助10
9秒前
斯文败类应助灵巧的之瑶采纳,获得10
9秒前
9秒前
10秒前
厉不厉害你坤哥完成签到,获得积分10
10秒前
科目三应助纯情的道消采纳,获得10
11秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821306
求助须知:如何正确求助?哪些是违规求助? 3364005
关于积分的说明 10426992
捐赠科研通 3082521
什么是DOI,文献DOI怎么找? 1695671
邀请新用户注册赠送积分活动 815216
科研通“疑难数据库(出版商)”最低求助积分说明 769050