医学
接收机工作特性
心房颤动
逻辑回归
感染性休克
重症监护室
倾向得分匹配
阿达布思
队列
重症监护
机器学习
多元统计
回顾性队列研究
急诊医学
内科学
人工智能
重症监护医学
支持向量机
计算机科学
败血症
作者
Ziwen Wang,Linna Zhang,Yali Chao,Meng Xu,Xiaojuan Geng,Xiaoyi Hu
出处
期刊:Shock
[Lippincott Williams & Wilkins]
日期:2023-01-04
卷期号:59 (3): 400-408
被引量:6
标识
DOI:10.1097/shk.0000000000002078
摘要
Introduction: Septic patients with atrial fibrillation (AF) are common in the intensive care unit accompanied by high mortality. The early prediction of prognosis of these patients is critical for clinical intervention. This study aimed to develop a model by using machine learning (ML) algorithms to predict the risk of 28-day mortality in septic patients with AF. Methods: In this retrospective cohort study, we extracted septic patients with AF from the Medical Information Mart for Intensive Care III (MIMIC-III) and IV database. Afterward, only MIMIC-IV cohort was randomly divided into training or internal validation set. External validation set was mainly extracted from MIMIC-III database. Propensity score matching was used to reduce the imbalance between the external validation and internal validation data sets. The predictive factors for 28-day mortality were determined by using multivariate logistic regression. Then, we constructed models by using ML algorithms. Multiple metrics were used for evaluation of performance of the models, including the area under the receiver operating characteristic curve, sensitivity, specificity, recall, and accuracy. Results: A total of 5,317 septic patients with AF were enrolled, with 3,845 in the training set, 960 in the internal testing set, and 512 in the external testing set, respectively. Then, we established four prediction models by using ML algorithms. AdaBoost showed moderate performance and had a higher accuracy than the other three models. Compared with other severity scores, the AdaBoost obtained more net benefit. Conclusion: We established the first ML model for predicting the 28-day mortality of septic patients with AF. Compared with conventional scoring systems, the AdaBoost model performed moderately. The model established will have the potential to improve the level of clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI