DEVELOPMENT OF A MACHINE LEARNING MODEL FOR PREDICTING 28-DAY MORTALITY OF SEPTIC PATIENTS WITH ATRIAL FIBRILLATION

医学 接收机工作特性 心房颤动 逻辑回归 感染性休克 重症监护室 倾向得分匹配 阿达布思 队列 重症监护 机器学习 多元统计 回顾性队列研究 急诊医学 内科学 人工智能 重症监护医学 支持向量机 计算机科学 败血症
作者
Ziwen Wang,Linna Zhang,Yali Chao,Meng Xu,Xiaojuan Geng,Xiaoyi Hu
出处
期刊:Shock [Lippincott Williams & Wilkins]
卷期号:59 (3): 400-408 被引量:6
标识
DOI:10.1097/shk.0000000000002078
摘要

Introduction: Septic patients with atrial fibrillation (AF) are common in the intensive care unit accompanied by high mortality. The early prediction of prognosis of these patients is critical for clinical intervention. This study aimed to develop a model by using machine learning (ML) algorithms to predict the risk of 28-day mortality in septic patients with AF. Methods: In this retrospective cohort study, we extracted septic patients with AF from the Medical Information Mart for Intensive Care III (MIMIC-III) and IV database. Afterward, only MIMIC-IV cohort was randomly divided into training or internal validation set. External validation set was mainly extracted from MIMIC-III database. Propensity score matching was used to reduce the imbalance between the external validation and internal validation data sets. The predictive factors for 28-day mortality were determined by using multivariate logistic regression. Then, we constructed models by using ML algorithms. Multiple metrics were used for evaluation of performance of the models, including the area under the receiver operating characteristic curve, sensitivity, specificity, recall, and accuracy. Results: A total of 5,317 septic patients with AF were enrolled, with 3,845 in the training set, 960 in the internal testing set, and 512 in the external testing set, respectively. Then, we established four prediction models by using ML algorithms. AdaBoost showed moderate performance and had a higher accuracy than the other three models. Compared with other severity scores, the AdaBoost obtained more net benefit. Conclusion: We established the first ML model for predicting the 28-day mortality of septic patients with AF. Compared with conventional scoring systems, the AdaBoost model performed moderately. The model established will have the potential to improve the level of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KK发布了新的文献求助10
3秒前
安安发布了新的文献求助10
4秒前
4秒前
SciGPT应助时刻保持质疑采纳,获得10
5秒前
6秒前
6秒前
能干的新筠完成签到,获得积分10
7秒前
7秒前
璇璇1219完成签到 ,获得积分10
9秒前
BU发布了新的文献求助30
10秒前
Miranda完成签到,获得积分10
10秒前
Kakaluote完成签到,获得积分10
11秒前
zzz完成签到,获得积分10
12秒前
Miyya完成签到 ,获得积分10
14秒前
丘比特应助ldmr采纳,获得10
14秒前
煎炒焖煮炸培根完成签到,获得积分10
17秒前
安安完成签到,获得积分10
17秒前
思源应助鲜艳的青丝采纳,获得10
18秒前
英俊的铭应助cometx采纳,获得10
18秒前
谭凯文发布了新的文献求助60
21秒前
思源应助JX采纳,获得10
21秒前
21秒前
璇璇1219关注了科研通微信公众号
21秒前
21秒前
22秒前
24秒前
25秒前
卡卡西应助Chen272采纳,获得10
25秒前
花花完成签到,获得积分10
25秒前
27秒前
30秒前
cometx发布了新的文献求助10
31秒前
负责念梦发布了新的文献求助10
31秒前
wsw完成签到,获得积分10
31秒前
32秒前
32秒前
语霖仙完成签到,获得积分10
32秒前
32秒前
阔达映之关注了科研通微信公众号
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986