Periodic displacement accurate extraction of reservoir active slopes through InSAR observation and independent component analysis-based wavelet transform

干涉合成孔径雷达 流离失所(心理学) 小波变换 萃取(化学) 小波 地质学 地理 组分(热力学) 大地测量学 遥感 地震学 计算机科学 合成孔径雷达 人工智能 物理 心理学 化学 色谱法 心理治疗师 热力学
作者
Ningling Wen,Keren Dai,Jin Deng,Chen Liu,Rubing Liang,Bing Yu,Wenkai Feng
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103919-103919 被引量:6
标识
DOI:10.1016/j.jag.2024.103919
摘要

The stability of reservoir slopes is often greatly influenced by seasonal rainfall and periodic water level fluctuation. To reveal the spatiotemporal characteristics of displacement and the mechanism of the active slopes, it is of great significance to identify active slopes on reservoir banks and extract periodic displacements. The wavelet transform method based on least squares decomposition has been used to extract periodic displacements of reservoir slopes, which only divides displacements into two components, neglecting errors such as random terms. This paper proposes a method that combines Independent Component Analysis (ICA) and wavelet transform to investigate the temporal relationship between periodic displacements and water level fluctuations. Taking the Maoergai Hydropower Station in Heishui County as example, based on ascending and descending SAR images acquired from 2018 to 2020, a total of 21 active slopes were detected. The time series InSAR results were decomposed by ICA. Through separate analysis and validation on typical slopes, it was demonstrated that the obtained periodic displacements are highly consistent with the water level fluctuations, and displacement changes lag behind water level fluctuations. Cross-validation was performed and proved the stability and reliability of the time lag (about 80–88 days derived from ascending and descending observation) results in this paper. This study improves the accuracy and stability of the periodic displacement extraction and provides technical support for understanding the relationship between the water level fluctuations and the slope displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助guozizi采纳,获得10
刚刚
呱同志完成签到 ,获得积分10
2秒前
mysilicon完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
大力的忆霜完成签到 ,获得积分10
7秒前
杨德凯完成签到,获得积分10
8秒前
郭泓嵩完成签到,获得积分10
9秒前
赖向珊发布了新的文献求助10
12秒前
乐乐应助Reip379采纳,获得10
13秒前
Ava应助强壮的美女采纳,获得10
14秒前
M张完成签到,获得积分10
20秒前
俞秋烟发布了新的文献求助10
20秒前
yyy完成签到 ,获得积分10
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
cctv18应助chowjb采纳,获得10
22秒前
22秒前
hb完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
luoqin发布了新的文献求助10
25秒前
Xccccc完成签到 ,获得积分10
25秒前
27秒前
Reip379发布了新的文献求助10
27秒前
写不出来发布了新的文献求助10
27秒前
whr发布了新的文献求助10
28秒前
我是重医学生完成签到,获得积分10
29秒前
30秒前
诸葛御风举报快乐梦松求助涉嫌违规
32秒前
AprilLeung完成签到 ,获得积分10
33秒前
魔法披风完成签到,获得积分10
33秒前
34秒前
旭日完成签到,获得积分10
35秒前
幸运鹅47完成签到 ,获得积分10
37秒前
37秒前
noflatterer完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864154
求助须知:如何正确求助?哪些是违规求助? 3406440
关于积分的说明 10649956
捐赠科研通 3130451
什么是DOI,文献DOI怎么找? 1726369
邀请新用户注册赠送积分活动 831712
科研通“疑难数据库(出版商)”最低求助积分说明 779992