Fracture prediction in a Swiss cohort

医学 弗雷克斯 骨质疏松症 队列 接收机工作特性 髋部骨折 队列研究 骨质疏松性骨折 物理疗法 内科学 骨矿物
作者
Oliver Lehmann,Olga Mineeva,Dinara Veshchezerova,HansJörg Häuselmann,Laura Guyer,Stephan Reichenbach,Thomas Lehmann,Olga Demler,Judith Everts‐Graber,Mathias Wenger,Sven Oser,Martin Toniolo,Gernot Schmid,Ueli Studer,Hans‐Rudolf Ziswiler,Christian Steiner,Ferdinand Krappel,P. Pancaldi,Maki Kashiwagi,Diana Frey,René Zäch,H. Wéber
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
标识
DOI:10.1093/jbmr/zjae089
摘要

Fracture prediction is essential in managing patients with osteoporosis and is an integral component of many fracture prevention guidelines. We aimed to identify the most relevant clinical fracture risk factors in contemporary populations by training and validating short- and long-term fracture risk prediction models in 2 cohorts. We used traditional and machine learning survival models to predict risks of vertebral, hip, and any fractures on the basis of clinical risk factors, T-scores, and treatment history among participants in a nationwide Swiss Osteoporosis Registry (N = 5944 postmenopausal women, median follow-up of 4.1 yr between January 2015 and October 2022; a total of 1190 fractures during follow-up). The independent validation cohort comprised 5474 postmenopausal women from the UK Biobank with 290 incident fractures during follow-up. Uno's C-index and the time-dependent area under the receiver operating characteristics curve were calculated to evaluate the performance of different machine learning models (Random survival forest and eXtreme Gradient Boosting). In the independent validation set, the C-index was 0.74 [0.58, 0.86] for vertebral fractures, 0.83 [0.7, 0.94] for hip fractures, and 0.63 [0.58, 0.69] for any fractures at year 2, and these values further increased for longer estimations of up to 7 yr. In comparison, the 10-yr fracture probability calculated with FRAX Switzerland was 0.60 [0.55, 0.64] for major osteoporotic fractures and 0.62 [0.49, 0.74] for hip fractures. The most important variables identified with Shapley additive explanations values were age, T-scores, and prior fractures, while number of falls was an important predictor of hip fractures. Performances of both traditional and machine learning models showed similar C-indices. We conclude that fracture risk can be improved by including the lumbar spine T-score, trabecular bone score, numbers of falls and recent fractures, and treatment information has a significant impact on fracture prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十三完成签到 ,获得积分10
1秒前
2秒前
L.C.发布了新的文献求助10
5秒前
5秒前
水手_发布了新的文献求助10
6秒前
7秒前
顾矜应助L.C.采纳,获得10
8秒前
librahapper发布了新的文献求助10
10秒前
10秒前
归尘应助April采纳,获得10
11秒前
我要读博完成签到,获得积分10
11秒前
水手_完成签到,获得积分10
11秒前
霍师傅发布了新的文献求助10
12秒前
L.C.完成签到,获得积分10
14秒前
16秒前
Annie完成签到,获得积分10
16秒前
桐桐应助乐观的花生采纳,获得10
18秒前
FashionBoy应助霍师傅采纳,获得10
20秒前
liangxt发布了新的文献求助10
21秒前
22秒前
23秒前
24秒前
xiaopan9083发布了新的文献求助10
26秒前
四夕完成签到 ,获得积分10
28秒前
sparkle发布了新的文献求助10
28秒前
29秒前
Leeu完成签到,获得积分10
29秒前
科研通AI5应助xiaopan9083采纳,获得10
32秒前
1LDan完成签到,获得积分20
33秒前
36秒前
rrrrroxie应助wendinfgmei采纳,获得30
37秒前
归尘应助April采纳,获得10
38秒前
顺心牛排发布了新的文献求助10
41秒前
42秒前
44秒前
大萝贝完成签到,获得积分10
44秒前
FashionBoy应助顺心牛排采纳,获得10
46秒前
liangxt完成签到,获得积分20
47秒前
徐若楠发布了新的文献求助10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385