Fracture risk prediction in postmenopausal women with traditional and machine learning models in a nationwide, prospective cohort study in Switzerland with validation in the UK Biobank

医学 弗雷克斯 骨质疏松症 队列 接收机工作特性 髋部骨折 队列研究 骨质疏松性骨折 物理疗法 内科学 骨矿物
作者
Oliver Lehmann,Olga Mineeva,Dinara Veshchezerova,HansJörg Häuselmann,Laura Guyer,Stephan Reichenbach,Thomas Lehmann,Olga Demler,Judith Everts‐Graber,Mathias Wenger,Sven Oser,Martin Toniolo,Gernot Schmid,Ueli Studer,Hans‐Rudolf Ziswiler,Christian Steiner,Ferdinand Krappel,P. Pancaldi,Maki Kashiwagi,Diana Frey
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
卷期号:39 (8): 1103-1112
标识
DOI:10.1093/jbmr/zjae089
摘要

Abstract Fracture prediction is essential in managing patients with osteoporosis and is an integral component of many fracture prevention guidelines. We aimed to identify the most relevant clinical fracture risk factors in contemporary populations by training and validating short- and long-term fracture risk prediction models in 2 cohorts. We used traditional and machine learning survival models to predict risks of vertebral, hip, and any fractures on the basis of clinical risk factors, T-scores, and treatment history among participants in a nationwide Swiss Osteoporosis Registry (N = 5944 postmenopausal women, median follow-up of 4.1 yr between January 2015 and October 2022; a total of 1190 fractures during follow-up). The independent validation cohort comprised 5474 postmenopausal women from the UK Biobank with 290 incident fractures during follow-up. Uno’s C-index and the time-dependent area under the receiver operating characteristics curve were calculated to evaluate the performance of different machine learning models (Random survival forest and eXtreme Gradient Boosting). In the independent validation set, the C-index was 0.74 [0.58, 0.86] for vertebral fractures, 0.83 [0.7, 0.94] for hip fractures, and 0.63 [0.58, 0.69] for any fractures at year 2, and these values further increased for longer estimations of up to 7 yr. In comparison, the 10-yr fracture probability calculated with FRAX Switzerland was 0.60 [0.55, 0.64] for major osteoporotic fractures and 0.62 [0.49, 0.74] for hip fractures. The most important variables identified with Shapley additive explanations values were age, T-scores, and prior fractures, while number of falls was an important predictor of hip fractures. Performances of both traditional and machine learning models showed similar C-indices. We conclude that fracture risk can be improved by including the lumbar spine T-score, trabecular bone score, numbers of falls and recent fractures, and treatment information has a significant impact on fracture prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳先生发布了新的文献求助10
刚刚
1秒前
大力的镜子完成签到,获得积分20
1秒前
2秒前
顾矜应助文艺醉波采纳,获得10
2秒前
2秒前
张月完成签到,获得积分10
3秒前
3秒前
v_1155完成签到 ,获得积分20
4秒前
4秒前
xz发布了新的文献求助10
5秒前
Rita发布了新的文献求助10
5秒前
值班室禁止学习完成签到,获得积分10
5秒前
书霂完成签到,获得积分10
5秒前
DY发布了新的文献求助10
5秒前
年年发布了新的文献求助10
6秒前
浮游应助随便看看采纳,获得10
6秒前
一颗煤炭完成签到 ,获得积分10
6秒前
6秒前
糊涂的惠发布了新的文献求助10
7秒前
9秒前
cc发布了新的文献求助10
9秒前
科研通AI5应助miko采纳,获得10
10秒前
浮游应助笨笨的秋采纳,获得10
11秒前
Voskov发布了新的文献求助10
11秒前
奋斗千秋发布了新的文献求助10
11秒前
雪山飞龙发布了新的文献求助10
11秒前
七人七发布了新的文献求助10
11秒前
大模型应助大小米采纳,获得10
11秒前
深情安青应助tugou采纳,获得10
11秒前
12秒前
zkygmu发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
小猫咪发布了新的文献求助10
17秒前
Dloftdv完成签到 ,获得积分10
17秒前
吕小软发布了新的文献求助30
18秒前
呆萌雨兰完成签到,获得积分20
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169529
求助须知:如何正确求助?哪些是违规求助? 4360569
关于积分的说明 13577175
捐赠科研通 4207726
什么是DOI,文献DOI怎么找? 2307671
邀请新用户注册赠送积分活动 1307152
关于科研通互助平台的介绍 1253890