Fracture prediction in a Swiss cohort

医学 弗雷克斯 骨质疏松症 队列 接收机工作特性 髋部骨折 队列研究 骨质疏松性骨折 物理疗法 内科学 骨矿物
作者
Oliver Lehmann,Olga Mineeva,Dinara Veshchezerova,HansJörg Häuselmann,Laura Guyer,Stephan Reichenbach,Thomas Lehmann,Olga Demler,Judith Everts‐Graber,Mathias Wenger,Sven Oser,Martin Toniolo,Gernot Schmid,Ueli Studer,Hans‐Rudolf Ziswiler,Christian Steiner,Ferdinand Krappel,P. Pancaldi,Maki Kashiwagi,Diana Frey
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
标识
DOI:10.1093/jbmr/zjae089
摘要

Fracture prediction is essential in managing patients with osteoporosis and is an integral component of many fracture prevention guidelines. We aimed to identify the most relevant clinical fracture risk factors in contemporary populations by training and validating short- and long-term fracture risk prediction models in 2 cohorts. We used traditional and machine learning survival models to predict risks of vertebral, hip, and any fractures on the basis of clinical risk factors, T-scores, and treatment history among participants in a nationwide Swiss Osteoporosis Registry (N = 5944 postmenopausal women, median follow-up of 4.1 yr between January 2015 and October 2022; a total of 1190 fractures during follow-up). The independent validation cohort comprised 5474 postmenopausal women from the UK Biobank with 290 incident fractures during follow-up. Uno's C-index and the time-dependent area under the receiver operating characteristics curve were calculated to evaluate the performance of different machine learning models (Random survival forest and eXtreme Gradient Boosting). In the independent validation set, the C-index was 0.74 [0.58, 0.86] for vertebral fractures, 0.83 [0.7, 0.94] for hip fractures, and 0.63 [0.58, 0.69] for any fractures at year 2, and these values further increased for longer estimations of up to 7 yr. In comparison, the 10-yr fracture probability calculated with FRAX Switzerland was 0.60 [0.55, 0.64] for major osteoporotic fractures and 0.62 [0.49, 0.74] for hip fractures. The most important variables identified with Shapley additive explanations values were age, T-scores, and prior fractures, while number of falls was an important predictor of hip fractures. Performances of both traditional and machine learning models showed similar C-indices. We conclude that fracture risk can be improved by including the lumbar spine T-score, trabecular bone score, numbers of falls and recent fractures, and treatment information has a significant impact on fracture prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mei完成签到,获得积分10
2秒前
3秒前
聪明的青寒应助金雪采纳,获得10
3秒前
风中淇完成签到,获得积分10
3秒前
5秒前
5秒前
1997完成签到,获得积分10
5秒前
6秒前
sun发布了新的文献求助20
7秒前
英姑应助ECHO采纳,获得30
8秒前
Jerry20184完成签到 ,获得积分10
8秒前
yingying发布了新的文献求助10
8秒前
dd完成签到,获得积分10
10秒前
领导范儿应助smin采纳,获得10
10秒前
诚心晓露发布了新的文献求助30
12秒前
星星发布了新的文献求助10
12秒前
12秒前
耳东完成签到 ,获得积分10
13秒前
狗焕完成签到,获得积分10
13秒前
13秒前
vkey完成签到,获得积分10
14秒前
小马甲应助整齐凌萱采纳,获得10
14秒前
欣喜代秋完成签到,获得积分10
15秒前
fayefan发布了新的文献求助30
15秒前
JamesPei应助李兴采纳,获得10
16秒前
anchor完成签到,获得积分10
16秒前
16秒前
张杨发布了新的文献求助10
16秒前
17秒前
星星完成签到,获得积分20
17秒前
18秒前
欣喜代秋发布了新的文献求助10
18秒前
俏皮的匕发布了新的文献求助10
18秒前
宝贝丫头发布了新的文献求助10
18秒前
18秒前
19秒前
汉堡包应助fengzhong采纳,获得10
19秒前
小脚丫发布了新的文献求助10
19秒前
CipherSage应助诚心晓露采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369941
求助须知:如何正确求助?哪些是违规求助? 3868110
关于积分的说明 12060210
捐赠科研通 3510770
什么是DOI,文献DOI怎么找? 1926634
邀请新用户注册赠送积分活动 968550
科研通“疑难数据库(出版商)”最低求助积分说明 867564