MCHAN: Prediction of Human Microbe-drug Associations Based on Multiview Contrastive Hypergraph Attention Network

计算机科学 网络拓扑 药物重新定位 超图 图形 人工智能 机器学习 合并(版本控制) 理论计算机科学 数据挖掘 药品 生物 数学 离散数学 情报检索 药理学 操作系统
作者
Guanghui Li,Ziyan Cao,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 (1): 70-86 被引量:1
标识
DOI:10.2174/0115748936288616240212073805
摘要

Background: Complex and diverse microbial communities play a pivotal role in human health and have become a new drug target. Exploring the connections between drugs and microbes not only provides profound insights into their mechanisms but also drives progress in drug discovery and repurposing. The use of wet lab experiments to identify associations is time-consuming and laborious. Hence, the advancement of precise and efficient computational methods can effectively improve the efficiency of association identification between microorganisms and drugs. Objective: In this experiment, we propose a new deep learning model, a new multiview comparative hypergraph attention network (MCHAN) method for human microbe–drug association prediction. Methods: First, we fuse multiple similarity matrices to obtain a fused microbial and drug similarity network. By combining graph convolutional networks with attention mechanisms, we extract key information from multiple perspectives. Then, we construct two network topologies based on the above fused data. One topology incorporates the concept of hypernodes to capture implicit relationships between microbes and drugs using virtual nodes to construct a hyperheterogeneous graph. Next, we propose a cross-contrastive learning task that facilitates the simultaneous guidance of graph embeddings from both perspectives, without the need for any labels. This approach allows us to bring nodes with similar features and network topologies closer while pushing away other nodes. Finally, we employ attention mechanisms to merge the outputs of the GCN and predict the associations between drugs and microbes. Results: To confirm the effectiveness of this method, we conduct experiments on three distinct datasets. The results demonstrate that the MCHAN model surpasses other methods in terms of performance. Furthermore, case studies provide additional evidence confirming the consistent predictive accuracy of the MCHAN model. Conclusion: MCHAN is expected to become a valuable tool for predicting potential associations between microbiota and drugs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助lll采纳,获得10
刚刚
1秒前
卫梦亚关注了科研通微信公众号
1秒前
LIU发布了新的文献求助10
1秒前
2秒前
浮游应助机智剑封采纳,获得10
2秒前
科研通AI5应助难过的谷芹采纳,获得10
3秒前
NexusExplorer应助Dr-xu0002采纳,获得10
3秒前
踏实的求真完成签到,获得积分10
4秒前
浮游应助揺上天采纳,获得10
5秒前
小情绪应助是多多呀采纳,获得10
5秒前
暮封完成签到,获得积分20
5秒前
英吉利25发布了新的文献求助10
5秒前
WEIJIE_LI发布了新的文献求助10
5秒前
982289172发布了新的文献求助10
6秒前
wysky37完成签到,获得积分10
6秒前
8R60d8应助槑槑采纳,获得10
7秒前
7秒前
StrawCc完成签到 ,获得积分10
7秒前
7秒前
勤恳的天亦应助yfzhang采纳,获得20
7秒前
HHHHH发布了新的文献求助10
7秒前
7秒前
Camellia发布了新的文献求助10
8秒前
yyh发布了新的文献求助10
8秒前
fosca完成签到,获得积分10
8秒前
9秒前
害怕的煎饼完成签到,获得积分10
9秒前
FashionBoy应助王玥荟采纳,获得10
9秒前
9秒前
禾木完成签到,获得积分10
10秒前
10秒前
11秒前
斯文败类应助yym采纳,获得10
11秒前
谨慎的向南完成签到,获得积分10
11秒前
zxy完成签到,获得积分10
11秒前
fxd完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699