MCHAN: Prediction of Human Microbe-drug Associations Based on Multiview Contrastive Hypergraph Attention Network

计算机科学 网络拓扑 药物重新定位 超图 图形 人工智能 机器学习 合并(版本控制) 理论计算机科学 数据挖掘 药品 生物 数学 离散数学 情报检索 药理学 操作系统
作者
Guanghui Li,Ziyan Cao,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 (1): 70-86
标识
DOI:10.2174/0115748936288616240212073805
摘要

Background: Complex and diverse microbial communities play a pivotal role in human health and have become a new drug target. Exploring the connections between drugs and microbes not only provides profound insights into their mechanisms but also drives progress in drug discovery and repurposing. The use of wet lab experiments to identify associations is time-consuming and laborious. Hence, the advancement of precise and efficient computational methods can effectively improve the efficiency of association identification between microorganisms and drugs. Objective: In this experiment, we propose a new deep learning model, a new multiview comparative hypergraph attention network (MCHAN) method for human microbe–drug association prediction. Methods: First, we fuse multiple similarity matrices to obtain a fused microbial and drug similarity network. By combining graph convolutional networks with attention mechanisms, we extract key information from multiple perspectives. Then, we construct two network topologies based on the above fused data. One topology incorporates the concept of hypernodes to capture implicit relationships between microbes and drugs using virtual nodes to construct a hyperheterogeneous graph. Next, we propose a cross-contrastive learning task that facilitates the simultaneous guidance of graph embeddings from both perspectives, without the need for any labels. This approach allows us to bring nodes with similar features and network topologies closer while pushing away other nodes. Finally, we employ attention mechanisms to merge the outputs of the GCN and predict the associations between drugs and microbes. Results: To confirm the effectiveness of this method, we conduct experiments on three distinct datasets. The results demonstrate that the MCHAN model surpasses other methods in terms of performance. Furthermore, case studies provide additional evidence confirming the consistent predictive accuracy of the MCHAN model. Conclusion: MCHAN is expected to become a valuable tool for predicting potential associations between microbiota and drugs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俗丨完成签到,获得积分10
2秒前
123456完成签到 ,获得积分10
2秒前
Becky完成签到,获得积分10
2秒前
小不溜完成签到 ,获得积分10
3秒前
山神厘子完成签到,获得积分10
5秒前
嘿哈完成签到,获得积分10
5秒前
7秒前
缓慢海蓝完成签到 ,获得积分10
8秒前
plain完成签到,获得积分10
8秒前
tao完成签到 ,获得积分10
10秒前
LEOhard完成签到,获得积分10
11秒前
菜头完成签到,获得积分10
12秒前
今天也要好好学习完成签到,获得积分10
13秒前
孤鸿寄语发布了新的文献求助10
14秒前
来到火山口的大企鹅完成签到,获得积分10
14秒前
曾经的慕灵完成签到,获得积分10
15秒前
lighting完成签到 ,获得积分10
17秒前
尊敬帅哥完成签到,获得积分10
17秒前
sinlar完成签到,获得积分10
17秒前
Novice6354完成签到 ,获得积分10
17秒前
ai白哥完成签到,获得积分10
17秒前
你才是小哭包完成签到 ,获得积分10
19秒前
水穷云起完成签到,获得积分10
21秒前
22秒前
浮流少年完成签到,获得积分10
22秒前
Gyy完成签到,获得积分10
24秒前
畅快的念烟完成签到,获得积分10
24秒前
縤雨完成签到 ,获得积分10
26秒前
社恐科研狗完成签到,获得积分10
26秒前
ccc完成签到 ,获得积分10
29秒前
yellow完成签到 ,获得积分10
30秒前
踏实采波完成签到,获得积分10
31秒前
科研通AI5应助SRN采纳,获得10
31秒前
asdasd完成签到,获得积分10
32秒前
像猫的狗完成签到 ,获得积分10
32秒前
32秒前
王不雅完成签到,获得积分10
32秒前
Lyw完成签到 ,获得积分10
33秒前
倪小呆完成签到 ,获得积分10
34秒前
wang完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301167
捐赠科研通 3057247
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626