EV Charging Scheduling Under Demand Charge: A Block Model Predictive Control Approach

调度(生产过程) 计算机科学 需求响应 利润(经济学) 数学优化 运筹学 工程类 电气工程 经济 数学 微观经济学
作者
Lei Yang,Xinbo Geng,Xiaohong Guan,Lang Tong
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 2125-2138 被引量:5
标识
DOI:10.1109/tase.2023.3260804
摘要

This paper studies the online scheduling of electric vehicle charging by a service provider subject to a demand charge in a distribution system. Demand charge imposes a penalty on the peak power consumption over each billing period, representing a substantial cost for the service provider with a large number of clients. Because the demand charge is calculated at the end of the billing period, it poses challenges in real-time scheduling when energy demand forecasts are inaccurate, resulting in either overly conservative power consumption or substantial demand charge. We propose a block model predictive control approach that decomposes the demand charge into a sequence of stage costs. Optimality conditions on demand patterns are also presented and analyzed. Numerical simulations demonstrate the efficacy of the proposed approach. Note to Practitioners —This paper addresses a significant practical problem of minimizing the demand charge on the real-time scheduling of deferrable demands. In particular, we consider a setting where a commercial electric vehicle (EV) charging service provider has to manage the online scheduling of a large number of arriving EVs at a charging facility subject to a maximum charging power constraint and a tariff with the demand charge. A major practical challenge is to balance the tradeoff between maximizing profit in scheduling as much EV charging as possible and the need to minimize penalty on the peak charging power. We propose a model predictive control strategy that decomposes the overall demand charge into a sequence of terminal costs. Also addressed is the practical constraint arising from the mismatched EV charging decision period and the power measurement period used to compute the demand charge. Using real data collected at the Adaptive Charging Network (ACN) testbed in simulations, the proposed approach yields 8-12% improvement in operational profit over existing benchmarks, while it has yet been tested in actual charging systems. In the future research, we will address the charging scheduling under demand charge over multiple charging stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Slow完成签到 ,获得积分20
刚刚
可爱的函函应助sure采纳,获得10
1秒前
6秒前
10秒前
传统的萝发布了新的文献求助10
11秒前
yztz应助六六大顺采纳,获得30
13秒前
烟花应助个性的丹亦采纳,获得10
16秒前
sure发布了新的文献求助10
17秒前
大模型应助传统的萝采纳,获得10
22秒前
HEIKU应助woshibyu采纳,获得10
23秒前
思源应助怕黑香菇采纳,获得10
26秒前
laber完成签到,获得积分10
29秒前
乐乐应助kzf丶bryant采纳,获得10
29秒前
31秒前
上官若男应助流沙无言采纳,获得10
34秒前
方赫然完成签到,获得积分0
35秒前
晓宇发布了新的文献求助10
36秒前
36秒前
岁月流年完成签到,获得积分10
37秒前
39秒前
42秒前
kzf丶bryant发布了新的文献求助10
43秒前
传统的萝完成签到,获得积分10
43秒前
小也发布了新的文献求助10
44秒前
li发布了新的文献求助10
46秒前
RATHER完成签到,获得积分10
49秒前
QIN关注了科研通微信公众号
49秒前
wuhao0118完成签到,获得积分10
52秒前
萨摩耶发布了新的文献求助10
55秒前
HEIKU应助wuhao0118采纳,获得10
55秒前
地学韦丰吉司长完成签到,获得积分10
56秒前
xo发布了新的文献求助10
56秒前
TTYYI关注了科研通微信公众号
57秒前
59秒前
1分钟前
QIN发布了新的文献求助10
1分钟前
幻心完成签到,获得积分10
1分钟前
1分钟前
Sewerant完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385