Guided Discrimination and Correlation Subspace Learning for Domain Adaptation

判别式 人工智能 模式识别(心理学) 子空间拓扑 计算机科学 学习迁移 相关性 不变(物理) 域适应 条件概率分布 机器学习 数学 分类器(UML) 统计 几何学 数学物理
作者
Yuwu Lu,Wai Keung Wong,Biqing Zeng,Zhihui Lai,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2017-2032 被引量:31
标识
DOI:10.1109/tip.2023.3261758
摘要

As a branch of transfer learning, domain adaptation leverages useful knowledge from a source domain to a target domain for solving target tasks. Most of the existing domain adaptation methods focus on how to diminish the conditional distribution shift and learn invariant features between different domains. However, two important factors are overlooked by most existing methods: 1) the transferred features should be not only domain invariant but also discriminative and correlated, and 2) negative transfer should be avoided as much as possible for the target tasks. To fully consider these factors in domain adaptation, we propose a guided discrimination and correlation subspace learning (GDCSL) method for cross-domain image classification. GDCSL considers the domain-invariant, category-discriminative, and correlation learning of data. Specifically, GDCSL introduces the discriminative information associated with the source and target data by minimizing the intraclass scatter and maximizing the interclass distance. By designing a new correlation term, GDCSL extracts the most correlated features from the source and target domains for image classification. The global structure of the data can be preserved in GDCSL because the target samples are represented by the source samples. To avoid negative transfer issues, we use a sample reweighting method to detect target samples with different confidence levels. A semi-supervised extension of GDCSL (Semi-GDCSL) is also proposed, and a novel label selection scheme is introduced to ensure the correction of the target pseudo-labels. Comprehensive and extensive experiments are conducted on several cross-domain data benchmarks. The experimental results verify the effectiveness of the proposed methods over state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
XUBALA发布了新的文献求助10
4秒前
5秒前
caoruyuan发布了新的文献求助10
5秒前
6秒前
无极微光应助shtnice采纳,获得20
6秒前
大个应助1sss采纳,获得10
7秒前
buno应助温暖访枫采纳,获得10
7秒前
蓝天应助温暖访枫采纳,获得10
7秒前
科研通AI6应助温暖访枫采纳,获得10
7秒前
林夕完成签到,获得积分10
8秒前
9秒前
丰富飞阳发布了新的文献求助10
9秒前
sapphire_yy完成签到,获得积分10
11秒前
Keira完成签到,获得积分10
11秒前
西贝发布了新的文献求助10
11秒前
思源应助蓝莓采纳,获得10
12秒前
12秒前
12秒前
ppll3906发布了新的文献求助10
13秒前
16秒前
emmai发布了新的文献求助10
16秒前
16秒前
16秒前
yrw完成签到,获得积分10
17秒前
321完成签到,获得积分10
17秒前
小叮当完成签到,获得积分10
18秒前
KKKK完成签到,获得积分20
18秒前
七友应助tinner采纳,获得10
18秒前
18秒前
Joker发布了新的文献求助10
18秒前
李文君发布了新的文献求助10
20秒前
mumahuangshu完成签到,获得积分20
20秒前
充电小子完成签到 ,获得积分10
20秒前
叫我益达完成签到,获得积分10
20秒前
20秒前
20秒前
KKKK发布了新的文献求助10
21秒前
21秒前
ppll3906完成签到,获得积分10
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314