Deep convolutional neural network-based identification and biological evaluation of MAO-B inhibitors

鉴定(生物学) 卷积神经网络 计算生物学 人工智能 计算机科学 化学 生物 植物
作者
Kushagra Kashyap,Girdhar Bhati,Shakil Ahmed,Mohammad Imran Siddiqi
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:: 136438-136438
标识
DOI:10.1016/j.ijbiomac.2024.136438
摘要

Parkinson's disease (PD) is one of the most prominent motor disorder of adult-onset dementia connected to memory and other cognitive abilities. Individuals with this vicious neurodegenerative condition tend to have an elevated expression of MAO-B that catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. This oxidative stress damages mitochondrial DNA and contributes to the progression of PD. To address this, we have developed a deep learning (DL)-based virtual screening protocol for the identification of promising MAO-B inhibitors using Convolutional neural network (ConvNet) based image classification technique by dealing with two unique kinds of image datasets associated with MACCS fingerprints. Following model building and prediction on the Maybridge library, our approach shortlisted the top 11 compounds at the end of molecular docking protocol. Further, the biological validation of the hits ideitified 4 compounds as promising MAO-B inhibitors. Among these, the compound RF02426 was found to have >50 % inhibition at 10 μM. Additionally, the study also underscored the utility of scaffold analysis as an effective way for evaluating the significance of structurally diverse compounds in data-driven investigations. We believe that our models are able to pick up diverse chemotype and this can be a starting scaffold for further structural optimization with medicinal chemistry efforts in order to improve their inhibition efficacy and be established as novel MAO-B inhibitors in the furture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美岂愈发布了新的文献求助10
刚刚
1秒前
2秒前
Jasper应助jsjjs采纳,获得10
3秒前
多肉丸子发布了新的文献求助10
3秒前
叮咚发布了新的文献求助30
3秒前
4秒前
zss完成签到,获得积分10
5秒前
CodeCraft应助轻松的惜芹采纳,获得20
6秒前
爆米花应助椰ye采纳,获得10
6秒前
仙笛童神发布了新的文献求助10
6秒前
7秒前
7秒前
HJM发布了新的文献求助10
9秒前
哈哈怪完成签到,获得积分10
10秒前
孙燕应助完美岂愈采纳,获得50
11秒前
11秒前
FFFFFF发布了新的文献求助10
11秒前
山谷与花完成签到,获得积分20
11秒前
火星上牛青完成签到,获得积分10
12秒前
erhao完成签到 ,获得积分10
12秒前
坎坎坷坷关注了科研通微信公众号
12秒前
灯与鬼发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
Alex完成签到,获得积分10
15秒前
16秒前
catherine完成签到,获得积分10
16秒前
17秒前
19秒前
不安青牛应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
MY999发布了新的文献求助10
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065713
求助须知:如何正确求助?哪些是违规求助? 3604364
关于积分的说明 11447194
捐赠科研通 3326838
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899036
科研通“疑难数据库(出版商)”最低求助积分说明 819410