Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 基因 生物化学
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
丘比特应助高兴的香薇采纳,获得10
1秒前
烟花应助苏航采纳,获得10
2秒前
悦耳的小夏完成签到,获得积分20
2秒前
等你下课发布了新的文献求助10
2秒前
浏阳河发布了新的文献求助10
2秒前
雪白发卡完成签到,获得积分10
2秒前
3秒前
3秒前
苏柏亚完成签到,获得积分10
4秒前
4秒前
5秒前
白茶发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
背后友蕊发布了新的文献求助10
5秒前
漂亮的孤丹完成签到,获得积分10
6秒前
6秒前
6秒前
无尽夏完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
苏柏亚发布了新的文献求助10
9秒前
悲凉的初翠完成签到,获得积分10
9秒前
9秒前
banbieshenlu发布了新的文献求助20
9秒前
Bin_Liu发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
NexusExplorer应助千千采纳,获得10
10秒前
11发布了新的文献求助10
11秒前
11秒前
DAZHANGYU完成签到,获得积分20
11秒前
在皖美羊羊完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804782
求助须知:如何正确求助?哪些是违规求助? 3349826
关于积分的说明 10346008
捐赠科研通 3065719
什么是DOI,文献DOI怎么找? 1683256
邀请新用户注册赠送积分活动 808798
科研通“疑难数据库(出版商)”最低求助积分说明 764846