Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 生物化学 基因
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xxxx完成签到 ,获得积分10
1秒前
1秒前
2秒前
Mp4完成签到 ,获得积分10
2秒前
2秒前
欣喜的薯片完成签到 ,获得积分10
3秒前
3秒前
CodeCraft应助zhangkx23采纳,获得10
4秒前
6秒前
希望天下0贩的0应助ckx采纳,获得10
6秒前
小米发布了新的文献求助10
7秒前
SCI1区发布了新的文献求助10
7秒前
情怀应助热闹的冬天采纳,获得10
8秒前
8秒前
老福贵儿应助称心的板栗采纳,获得10
9秒前
栗西西完成签到,获得积分10
9秒前
9秒前
Mizuki完成签到,获得积分10
10秒前
雾海完成签到,获得积分10
10秒前
小雨点完成签到,获得积分10
10秒前
kkscanl完成签到 ,获得积分10
10秒前
柚子完成签到 ,获得积分10
11秒前
孔孔完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
zhangkx23发布了新的文献求助10
14秒前
程瑞哲发布了新的文献求助10
16秒前
阳光的小土豆完成签到,获得积分10
17秒前
zhangkx23完成签到,获得积分10
20秒前
Xinxin完成签到,获得积分10
21秒前
十号信封完成签到,获得积分10
22秒前
云柔竹劲完成签到 ,获得积分10
24秒前
星辰大海应助Xinxin采纳,获得10
25秒前
研友_VZG7GZ应助YangLi采纳,获得10
26秒前
27秒前
科研通AI6应助song采纳,获得10
28秒前
陈艺杨完成签到 ,获得积分10
28秒前
29秒前
完美世界应助默默的冰兰采纳,获得10
30秒前
mengtingmei应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495177
求助须知:如何正确求助?哪些是违规求助? 4592877
关于积分的说明 14439094
捐赠科研通 4525740
什么是DOI,文献DOI怎么找? 2479654
邀请新用户注册赠送积分活动 1464467
关于科研通互助平台的介绍 1437333