Developing a Deep Learning network “MSCP-Net” to generate stalk anatomical traits related with crop lodging and yield in maize

农学 作物 近交系 生物 园艺 生物化学 基因
作者
Haiyu Zhou,Xiang Li,Yufeng Jiang,Xiaoying Zhu,Taiming Fu,Ming-Chong Yang,Weidong Cheng,Xiaodong Xie,Yan Chen,Lingqiang Wang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:160: 127325-127325
标识
DOI:10.1016/j.eja.2024.127325
摘要

Plant stem is essential for the delivery of resources and has a great impact on plant lodging resistance and yield. However, how to accurately and efficiently extract structural information from crop stems is a big headache. In this study, we first established a Maize Stalk Cross-section Phenotype (MSCP) dataset containing anatomical information of 990 images from hand-cut transections of stalks. Then, to large-scale measure the stalk anatomy features, we developed a Maize Stalk Cross-section Phenotyping Network (MSCP-Net) which integrated a convolutional neural network and the methods of instance segmentation and key point detection. A total of 14 stalk anatomical parameters (traits) can be automatically produced with high [email protected] (0.907) for the parameter "vascular bundles segmentation" and high DICE (0.864) for the parameter "functional zones segmentation". The cross-validation with the MSCP dataset indicated the good performance of MSCP-Net in predicting anatomical traits. On this basis, the correlation analysis across 14 anatomical traits and 12 agronomic importance traits in 110 maize inbred-lines was conducted and revealed that the stalk related traits (stem cross-section, large vascular bundles, fiber contents, and aerial roots) are key indicators for lodging resistance and grain yield of maize. In addition, the maize inbred-lines were classified into two groups, and the higher value of group II compared with group I in breeding hybrid varieties was discussed. The results demonstrated that the MSCP-Net is expected to be a useful tool to rapidly obtain stem anatomical traits which are agronomic important in maize genetic improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15858833895完成签到,获得积分10
2秒前
完美世界应助博修采纳,获得10
4秒前
humu应助pophoo采纳,获得10
7秒前
栗子发布了新的文献求助10
7秒前
慕青应助SherWei采纳,获得20
8秒前
9秒前
10秒前
13秒前
13秒前
15秒前
赘婿应助俭朴易槐采纳,获得10
15秒前
匿天发布了新的文献求助20
15秒前
16秒前
17秒前
17秒前
浅斟低唱发布了新的文献求助30
17秒前
17秒前
镜花水月发布了新的文献求助20
18秒前
19秒前
jiang完成签到 ,获得积分10
19秒前
自然的绿兰完成签到,获得积分10
20秒前
白白发布了新的文献求助10
21秒前
淡定的幻枫完成签到 ,获得积分10
21秒前
赫诗桃完成签到,获得积分10
22秒前
sifvld完成签到,获得积分10
22秒前
renheit发布了新的文献求助10
22秒前
英姑应助Willer采纳,获得10
22秒前
22秒前
23秒前
失眠乞发布了新的文献求助10
24秒前
24秒前
25秒前
Lucas应助Jorna采纳,获得10
26秒前
SherWei发布了新的文献求助20
27秒前
甜馨发布了新的文献求助30
27秒前
28秒前
积极的凝云完成签到,获得积分10
28秒前
博修发布了新的文献求助10
30秒前
大力秋蝶完成签到,获得积分10
30秒前
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745