药物发现
计算机科学
计算生物学
机器学习
虚拟筛选
重新调整用途
鉴定(生物学)
药物重新定位
人工智能
数据挖掘
生物信息学
生物
药品
药理学
生态学
植物
作者
Julián F. Fernández,Leandro Martínez Heredia,Francesco Caracciolo,Daniel Esses,Rodrigo Peláez Suárez,Gastón E. Siless,Concepción Pérez,María Isabel Rodríguez‐Franco,Lucía R. Fernández,Jorge A. Palermo,Martín J. Lavecchia
标识
DOI:10.1002/chem.202401838
摘要
Abstract In this work we introduce Target Fisher, a consensus structure‐based target prediction tool that integrates molecular docking and machine learning with the aim to aid in the identification of potential biological targets and the optimization of the use of bioassays. Target Fisher uses per‐residue energy decomposition profiles extracted from docking poses as fingerprints to train target‐specific machine learning models. It provides predictions for a curated set of 37 protein targets, covering a diverse range of biological entities, and offers a user‐friendly interface accessible via a web server ( https://gqc.quimica.unlp.edu.ar/targetfisher/ ). In this sense, Target Fisher is a valuable tool to aid organic and medicinal chemistry groups in target identification, drug discovery and drug repurposing. As a case study, we demonstrate the efficacy of Target Fisher by screening a small library of assorted natural products for targets relevant to neurodegenerative diseases, which resulted in the identification and experimental validation of selective inhibitors of monoamine oxidase B (MAO−B).
科研通智能强力驱动
Strongly Powered by AbleSci AI