数学
先验与后验
特征向量
能量(信号处理)
格罗斯-皮塔耶夫斯基方程
上下界
误差分析
应用数学
数学分析
统计
量子力学
物理
哲学
玻色-爱因斯坦凝聚体
认识论
作者
Dietmar Gallistl,Moritz Hauck,Yizhou Liang,Daniel Peterseim
标识
DOI:10.1093/imanum/drae048
摘要
Abstract We establish an a priori error analysis for the lowest-order Raviart–Thomas finite element discretization of the nonlinear Gross-Pitaevskii eigenvalue problem. Optimal convergence rates are obtained for the primal and dual variables as well as for the eigenvalue and energy approximations. In contrast to conforming approaches, which naturally imply upper energy bounds, the proposed mixed discretization provides a guaranteed and asymptotically exact lower bound for the ground state energy. The theoretical results are illustrated by a series of numerical experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI