清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of proliferative diabetic retinopathy using machine learning in Latino and non‐Hispanic black cohorts with routine blood and urine testing

医学 糖尿病性视网膜病变 肌酐 糖尿病 肾功能 尿 民族 内科学 内分泌学 社会学 人类学
作者
Ayelet Goldstein,Kun Ding,Onelys Carasquillo,Barton S. Levine,Aisha Hasan,Jonathan Levine
出处
期刊:Ophthalmic and Physiological Optics [Wiley]
标识
DOI:10.1111/opo.13363
摘要

Abstract Purpose The objective was to predict proliferative diabetic retinopathy (PDR) in non‐Hispanic Black (NHB) and Latino (LA) patients by applying machine learning algorithms to routinely collected blood and urine laboratory results. Methods Electronic medical records of 1124 type 2 diabetes patients treated at the Bronxcare Hospital eye clinic between January and December 2019 were analysed. Data collected included demographic information (ethnicity, age and sex), blood (fasting glucose, haemoglobin A1C [HbA1c] high‐density lipoprotein [HDL], low‐density lipoprotein [LDL], serum creatinine and estimated glomerular filtration rate [eGFR]) and urine (albumin‐to‐creatinine ratio [ACR]) test results and the outcome measure of retinopathy status. The efficacy of different machine learning models was assessed and compared. SHapley Additive exPlanations (SHAP) analysis was employed to evaluate the contribution of each feature to the model's predictions. Results The balanced random forest model surpassed other models in predicting PDR for both NHB and LA cohorts, achieving an AUC (area under the curve) of 83%. Regarding sex, the model exhibited remarkable performance for the female LA demographic, with an AUC of 87%. The SHAP analysis revealed that PDR‐related factors influenced NHB and LA patients differently, with more pronounced disparity between sexes. Furthermore, the optimal cut‐off values for these factors showed variations based on sex and ethnicity. Conclusions This study demonstrates the potential of machine learning in identifying individuals at higher risk for PDR by leveraging routine blood and urine test results. It allows clinicians to prioritise at‐risk individuals for timely evaluations. Furthermore, the findings emphasise the importance of accounting for both ethnicity and sex when analysing risk factors for PDR in type 2 diabetes individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solomon完成签到 ,获得积分0
2秒前
刘一三完成签到 ,获得积分10
13秒前
wushuimei完成签到 ,获得积分10
18秒前
么么哒荼蘼酱完成签到,获得积分10
30秒前
天天向上完成签到 ,获得积分10
33秒前
传奇完成签到 ,获得积分10
1分钟前
淡然藏花完成签到 ,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
甜美的秋尽完成签到,获得积分10
1分钟前
2分钟前
勤恳凡儿发布了新的文献求助10
2分钟前
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
早点吃饭发布了新的文献求助10
3分钟前
Orange应助早点吃饭采纳,获得10
3分钟前
4分钟前
4分钟前
韩寒完成签到 ,获得积分10
4分钟前
早点吃饭发布了新的文献求助10
4分钟前
早点吃饭完成签到,获得积分10
4分钟前
poki完成签到 ,获得积分10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
crown发布了新的文献求助10
5分钟前
范白容完成签到 ,获得积分0
5分钟前
crown完成签到,获得积分10
5分钟前
Binbin完成签到 ,获得积分10
5分钟前
kingcoffee完成签到 ,获得积分10
5分钟前
蒲蒲完成签到 ,获得积分10
6分钟前
桐桐应助科研通管家采纳,获得10
6分钟前
大个应助科研通管家采纳,获得10
6分钟前
binyao2024完成签到,获得积分10
7分钟前
木乙完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468