User preferences and trust in hypothetical analog, digitalized and AI-based medical consultation scenarios: An online discrete choice survey

计算机科学 离散选择 人机交互 心理学 数据科学 应用心理学 机器学习
作者
Carlotta Julia Mayer,Julia Mahal,Daniela Geisel,Eva J. Geiger,Elias Staatz,Maximilian Zappel,Seraina Petra Lerch,Johannes C. Ehrenthal,Steffen Walter,Beate Ditzen
出处
期刊:Computers in Human Behavior [Elsevier BV]
卷期号:161: 108419-108419 被引量:7
标识
DOI:10.1016/j.chb.2024.108419
摘要

Current developments in telemedicine and artificial intelligence (AI) are significantly impacting doctor-patient interactions. This study examined the interacting role of individual traits with different levels of digitalization in participants' user preferences and trust within hypothetical medical scenarios. Specifically, preferences and trust levels towards various digitalized and analog formats, such as face-to-face interactions, video calls, written exchanges with a doctor or chatbot, or conversations with AI avatars were compared using standard scenarios of varying health risks and potentially embarrassing content. In an online discrete choice experiment, 1009 participants rated hypothetical scenarios of varying medical concerns regarding their preferred conversation format and trust. User preference (n = 2018 observations) and trust (n = 9880 observations) were predicted using two multilevel models. Higher perceived efficiency of digital conversation formats predicted user preference for digitalized formats. However, users' preference for digitalized formats was generally lower compared to face-to-face interactions, especially when receiving bad news. The level of digitalization was negatively associated with trust, which was lower for consultations that involved receiving bad news or discussing potentially embarrassing content compared to good news. Trust ratings varied depending on the conversation topic. When comparing analog and digitalized medical consultation scenarios, digitalized medical consultations are not equally suited for every medical consultation. Participants preferred personal contact, particularly when bad news needed to be communicated. Additionally, trust in the doctor significantly varies depending on the topic of conversation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soapffz完成签到,获得积分0
刚刚
希望天下0贩的0应助fj采纳,获得10
1秒前
李迅迅发布了新的文献求助10
2秒前
怕黑傲柏完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
hihihihihi发布了新的文献求助30
5秒前
Hq发布了新的文献求助10
5秒前
CipherSage应助合适的冷松采纳,获得10
6秒前
6秒前
6秒前
好啊完成签到,获得积分10
7秒前
在水一方应助爱听歌匪采纳,获得10
7秒前
8秒前
饱饱完成签到,获得积分10
8秒前
3201完成签到 ,获得积分20
8秒前
dd发布了新的文献求助10
9秒前
何老师完成签到,获得积分10
10秒前
浮游应助CYYDNDB采纳,获得30
10秒前
vv完成签到,获得积分10
11秒前
sonya1122完成签到,获得积分10
11秒前
12秒前
wengjiaqi完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
何老师发布了新的文献求助10
14秒前
浮游应助Electra采纳,获得10
14秒前
15秒前
任性觅翠完成签到,获得积分10
15秒前
LJ发布了新的文献求助10
16秒前
Hq完成签到,获得积分10
17秒前
浮游应助清秀黎昕采纳,获得10
18秒前
wxinli完成签到,获得积分20
18秒前
无花果应助libra采纳,获得10
18秒前
19秒前
19秒前
20秒前
种草匠完成签到,获得积分10
21秒前
luluhuhu发布了新的文献求助10
21秒前
yyzhou应助小歘歘采纳,获得20
21秒前
平淡冰枫发布了新的文献求助30
22秒前
superlun发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4866116
求助须知:如何正确求助?哪些是违规求助? 4158622
关于积分的说明 12894460
捐赠科研通 3912155
什么是DOI,文献DOI怎么找? 2148821
邀请新用户注册赠送积分活动 1167448
关于科研通互助平台的介绍 1069731