An Improved Nutcracker Optimization Algorithm for Discrete and Continuous Optimization Problems: Design, Comprehensive Analysis, and Engineering Applications

算法 元启发式 最大值和最小值 趋同(经济学) 计算机科学 可扩展性 连续优化 数学优化 最优化问题 早熟收敛 并行元启发式 禁忌搜索 粒子群优化 数学 多群优化 元优化 经济增长 数据库 数学分析 经济
作者
Mohamed Abdel‐Basset,Reda Mohamed,Ibrahim M. Hezam,Karam M. Sallam,Ibrahim A. Hameed
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (17): e36678-e36678 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e36678
摘要

This study is presented to examine the performance of a newly proposed metaheuristic algorithm within discrete and continuous search spaces. Therefore, the multithresholding image segmentation problem and parameter estimation problem of both the proton exchange membrane fuel cell (PEMFC) and photovoltaic (PV) models, which have different search spaces, are used to test and verify this algorithm. The traditional techniques could not find approximate solutions for those problems in a reasonable amount of time, so researchers have used metaheuristic algorithms to overcome those shortcomings. However, the majority of metaheuristic algorithms still suffer from slow convergence speed and stagnation into local minima problems, which makes them unsuitable for tackling these optimization problems. Therefore, this study proposes an improved nutcracker optimization algorithm (INOA) for better solving those problems in an acceptable amount of time. INOA is based on improving the performance of the standard algorithm using a newly proposed convergence improvement strategy that aims to improve the convergence speed and prevent stagnation in local minima. This algorithm is first applied to estimating the unknown parameters of the single-diode, double-diode, and triple-diode models for a PV module and a solar cell. Second, four PEMFC modules are used to further observe INOA's performance for the continuous optimization challenge. Finally, the performance of INOA is investigated for solving the multi-thresholding image segmentation problem to test its effectiveness in a discrete search space. Several test images with different threshold levels were used to validate its effectiveness, stability, and scalability. Comparison to several rival optimizers using various performance indicators, such as convergence curve, standard deviation, average fitness value, and Wilcoxon rank-sum test, demonstrates that INOA is an effective alternative for solving both discrete and continuous optimization problems. Quantitively, INOA could solve those problems better than the other rival optimizers, with improvement rates for final results ranging between 0.8355 % and 3.34 % for discrete problems and 4.97 % and 99.9 % for continuous problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxm发布了新的文献求助10
1秒前
可靠盼旋发布了新的文献求助10
2秒前
李爱国应助vitamin采纳,获得10
3秒前
嘟嘟发布了新的文献求助10
3秒前
Lynn发布了新的文献求助10
4秒前
时间的过客完成签到,获得积分10
5秒前
聪慧芷巧发布了新的文献求助10
6秒前
9秒前
fffff发布了新的文献求助10
10秒前
大模型应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Blue应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得30
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
Blue应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助100
16秒前
XIaoLuzi发布了新的文献求助10
16秒前
沙脑完成签到 ,获得积分10
16秒前
李二三完成签到,获得积分10
17秒前
万能图书馆应助恋雅颖月采纳,获得10
17秒前
脑洞疼应助Yy杨优秀采纳,获得10
18秒前
19秒前
自由的便当完成签到,获得积分10
20秒前
宇宇发布了新的文献求助20
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260103
求助须知:如何正确求助?哪些是违规求助? 3792910
关于积分的说明 11896388
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938973
科研通“疑难数据库(出版商)”最低求助积分说明 844349