The Change Detection of Mangrove Forests Using Deep Learning with Medium-Resolution Satellite Imagery: A Case Study of Wunbaik Mangrove Forest in Myanmar

红树林 遥感 卫星图像 地理 环境科学 生态学 生物
作者
Kyaw Soe Win,Jun Sasaki
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (21): 4077-4077
标识
DOI:10.3390/rs16214077
摘要

This paper presents the development of a U-Net model using four basic optical bands and SRTM data to analyze changes in mangrove forests from 1990 to 2024, with an emphasis on the impact of restoration programs. The model, which employed supervised learning for binary classification by fusing multi-temporal Landsat 8 and Sentinel-2 imagery, achieved a superior accuracy of 99.73% for the 2020 image classification. It was applied to predict the long-term mangrove maps in Wunbaik Mangrove Forest (WMF) and to detect the changes at five-year intervals. The change detection results revealed significant changes in the mangrove forests, with 29.3% deforestation, 5.75% reforestation, and −224.52 ha/yr of annual rate of changes over 34 years. The large areas of mangrove forests have increased since 2010, primarily due to naturally recovered and artificially planted mangroves. Approximately 30% of the increased mangroves from 2015 to 2024 were attributed to mangrove plantations implemented by the government. This study contributes to developing a deep learning model with multi-temporal and multi-source imagery for long-term mangrove monitoring by providing accurate performance and valuable information for effective conservation strategies and restoration programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒_BX发布了新的文献求助10
2秒前
2秒前
tcy完成签到,获得积分10
2秒前
DrZ发布了新的文献求助10
3秒前
Ava应助我不采纳,获得10
5秒前
dududd发布了新的文献求助10
7秒前
7秒前
完美世界应助Rong0618采纳,获得20
7秒前
Akim应助HansStone采纳,获得10
8秒前
阿莽完成签到,获得积分10
8秒前
zhuxiaonian完成签到,获得积分10
9秒前
星辰大海应助斯文可仁采纳,获得10
11秒前
花无双完成签到,获得积分0
11秒前
wangjing1112发布了新的文献求助10
11秒前
充电宝应助LHL采纳,获得10
12秒前
慕青应助dududd采纳,获得10
16秒前
酷波er应助田昀杰采纳,获得10
16秒前
18秒前
18秒前
Jasper应助fosca采纳,获得10
19秒前
20秒前
21秒前
Rong0618发布了新的文献求助20
22秒前
领导范儿应助wangjing1112采纳,获得10
23秒前
斯文可仁发布了新的文献求助10
23秒前
LHL发布了新的文献求助10
25秒前
26秒前
YHL发布了新的文献求助10
27秒前
Ryan发布了新的文献求助50
29秒前
haoyunlai发布了新的文献求助30
29秒前
jk完成签到,获得积分10
30秒前
斯文可仁完成签到,获得积分10
30秒前
找文献的天才狗完成签到,获得积分10
30秒前
李健应助王学生采纳,获得10
31秒前
ang发布了新的文献求助10
32秒前
cdercder应助青春采纳,获得10
32秒前
一样谦虚完成签到,获得积分10
33秒前
34秒前
34秒前
独特的春完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341676
关于积分的说明 10307179
捐赠科研通 3058271
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762815