Prediction of power conversion efficiency parameter of inverted organic solar cells using artificial intelligence techniques

能量转换效率 计算机科学 有机太阳能电池 人工智能 生物系统 材料科学 光伏系统 工程类 生物 光电子学 电气工程
作者
Mustapha Marzouglal,Abdelkerim Souahlia,Lakhdar Bessissa,Djillali Mahi,Abdelaziz Rabehi,Yahya Z. Alharthi,Amanuel Kumsa Bojer,Aymen Flah,Mosleh M. Alharthi,Sherif S. M. Ghoneim
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:4
标识
DOI:10.1038/s41598-024-77112-3
摘要

Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
纯真衬衫完成签到,获得积分10
3秒前
SciGPT应助烂漫绮兰采纳,获得10
3秒前
轻松的笑容完成签到,获得积分10
3秒前
5秒前
友好的如波完成签到,获得积分10
5秒前
6秒前
世外完成签到,获得积分10
6秒前
研友_VZG7GZ应助喜洋洋采纳,获得10
7秒前
科研通AI6应助松鼠采纳,获得10
8秒前
9秒前
ice.sweet发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
12秒前
深情安青应助落伍的螃蟹采纳,获得10
13秒前
丘比特应助foreverwhy采纳,获得10
14秒前
Sicily完成签到,获得积分10
14秒前
走走发布了新的文献求助10
14秒前
温柔沛槐发布了新的文献求助10
15秒前
12彡完成签到 ,获得积分10
18秒前
19秒前
雷欧发布了新的文献求助10
19秒前
20秒前
ice.sweet完成签到,获得积分10
21秒前
JamesPei应助走走采纳,获得10
21秒前
22秒前
22秒前
鉴湖完成签到,获得积分20
23秒前
25秒前
25秒前
桐桐应助念l采纳,获得10
27秒前
科研通AI6应助王羿曈采纳,获得10
28秒前
量子星尘发布了新的文献求助10
30秒前
拼搏老鼠发布了新的文献求助10
30秒前
念l完成签到,获得积分10
31秒前
林夏完成签到,获得积分10
32秒前
Owen应助dzking采纳,获得10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4264190
求助须知:如何正确求助?哪些是违规求助? 3796729
关于积分的说明 11902665
捐赠科研通 3443248
什么是DOI,文献DOI怎么找? 1889316
邀请新用户注册赠送积分活动 940217
科研通“疑难数据库(出版商)”最低求助积分说明 844838