亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image all-in-one adverse weather removal via dynamic model weights generation

卷积(计算机科学) 卷积神经网络 特征(语言学) 代表(政治) 特征学习 模式识别(心理学) 人工智能 计算机科学 人工神经网络 数据挖掘 语言学 哲学 政治 政治学 法学
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112324-112324
标识
DOI:10.1016/j.knosys.2024.112324
摘要

Restoring image under multiple weather conditions in an all-in-one fashion remains a formidable challenge due to images captured under different weather conditions exhibit different degradation characteristics and patterns. However, existing all-in-one adverse weather removal methods mainly focus on learning shared generic knowledge of multiple weather conditions via fixed network parameters, which fails to adjust for different instances to fit exclusive features characterization of specific weather conditions. To tackle this issue, we propose a novel dynamic weights generation network (DwGN) that can adaptively mine and extract instance-exclusive degradation features for different weather conditions via dynamically generated convolutional weights. Specifically, we first propose two fundamental dynamic weights convolutions, which can automatically generate optimal convolutional weights for distinct pending features via a lightweight yet efficient mapping layer. The predicted convolutional weights are then incorporated into the convolution operation to extract instance-exclusive features for different weather conditions. Building upon the dynamic weights convolutions, we further devise a tailored weight adaptive Transformer blocks (WATB) which consists of two core modules: half-dynamic multi-head cross-attention (HDMC) that performs exclusive-generic feature interaction, and half-dynamic feed-forward network (HDFN) that performs selected exclusive-generic feature transformation and aggregation. Considering communal features shared between different weather conditions (e.g., background representation), both HDMC and HDFN deploy only half of the dynamic weights convolutions for instance-exclusive feature characterization, while still deploying half of the static convolutions to characterize generic features. Through adaptive weight tuning, our DwGN can adaptively adapt to different weather scenarios and effectively capture the instance-exclusive degradation features, thus enjoying better flexibility and adaptability under all-in-one adverse weather removal. Extensive experiments demonstrate that our DwGN performs favorably against state-of-the-art algorithms. In particular, our proposed DwGN achieves the best PSNR and SSIM scores on all five tasks both in the task-specific setting and in the all-in-one setting. Furthermore, our method has shown consistent performance improvement in both real-world and high-level visual applications. The implementation code is available at https://github.com/Jeasco/DwGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
3秒前
所所应助CC采纳,获得10
7秒前
牛八先生完成签到,获得积分10
21秒前
34秒前
36秒前
Mr兔仙森发布了新的文献求助10
39秒前
ljl12138发布了新的文献求助10
41秒前
Mr兔仙森完成签到,获得积分20
50秒前
ding应助ljl12138采纳,获得30
52秒前
乐乐应助科研通管家采纳,获得10
1分钟前
小海应助科研通管家采纳,获得10
1分钟前
2分钟前
dongmei发布了新的文献求助10
2分钟前
feenuar完成签到,获得积分10
2分钟前
慕青应助dongmei采纳,获得10
2分钟前
2分钟前
纳米完成签到,获得积分10
3分钟前
3分钟前
present发布了新的文献求助10
3分钟前
Akim应助动听文轩采纳,获得10
3分钟前
3分钟前
美满踏歌完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
美满踏歌发布了新的文献求助30
3分钟前
present完成签到,获得积分10
3分钟前
艾米发布了新的文献求助10
3分钟前
艾米完成签到,获得积分20
4分钟前
牧沛凝完成签到 ,获得积分10
4分钟前
4分钟前
小海应助科研通管家采纳,获得10
5分钟前
小海应助科研通管家采纳,获得10
5分钟前
5分钟前
傻傻的芝发布了新的文献求助10
5分钟前
5分钟前
Cccc小懒发布了新的文献求助10
5分钟前
落寞的怜雪完成签到,获得积分20
5分钟前
XCHI完成签到 ,获得积分10
6分钟前
小海应助科研通管家采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333687
关于积分的说明 10262981
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504