Real-time data visual monitoring of triboelectric nanogenerators enabled by Deep learning

摩擦电效应 材料科学 卷积神经网络 物联网 领域(数学) 纳米发生器 深度学习 边缘计算 系统工程 嵌入式系统 人工智能 电气工程 工程类 计算机科学 复合材料 电压 纯数学 数学
作者
H. H. Zhang,Tao Liu,Xuelian Zou,Yunpeng Zhu,Mingchao Chi,Di Wu,Keyang Jiang,Sijia Zhu,Wenxia Zhai,Shuangfei Wang,Shuangxi Nie,Zhiwei Wang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:130: 110186-110186 被引量:9
标识
DOI:10.1016/j.nanoen.2024.110186
摘要

The rapid advancement of smart sensors and logic algorithms has propelled the widespread adoption of the Internet of Things (IoT) and expedited the advent of the intelligent era. The integration of triboelectric nanogenerator (TENG) sensors with Deep learning (DL) leverages unique advantages of TENG such as self-powered sensing, high sensitivity, and broad applicability, along with DL's robust data processing capabilities to effectively, efficiently, and visually monitor various relevant signals. This amalgamation exhibits significantly superior sensing performance and immense developmental potential, finding extensive utility in domains like smart homes, healthcare system, environmental monitoring, among others. Currently, the synergistic working principle of integrating these two technologies remains insufficiently elucidated. This review presents a comprehensive overview of cutting-edge DL techniques and related research aimed at enhancing real-time visual monitoring of TENG. Specifically, it focuses on DL algorithms such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) for processing intricate TENG-generated datasets. Furthermore, this review outlines the advantages and synergistic mechanisms resulting from the integration of DL with TENG sensors, providing a comprehensive summary of their latest applications in various fields requiring real-time data visual monitoring. Finally, it analyzes the prospects, challenges, and countermeasures associated with the integrated development of TENG and DL while offering a comprehensive theoretical foundation and practical guidance for future advancements in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuli-888完成签到,获得积分10
2秒前
顺行发布了新的文献求助10
2秒前
3秒前
小晨完成签到 ,获得积分10
4秒前
5秒前
6秒前
北海未暖完成签到,获得积分10
6秒前
户户得振完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Marcie应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
Lily完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
Teddy4731完成签到,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
n22JDb完成签到,获得积分20
8秒前
英姑应助科研通管家采纳,获得50
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Marcie应助科研通管家采纳,获得10
9秒前
大鹏应助科研通管家采纳,获得20
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
可耐的无剑完成签到 ,获得积分10
9秒前
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
Willer发布了新的文献求助10
10秒前
joker_k应助科研通管家采纳,获得20
10秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728