An ultra-long-acting L-asparaginase synergizes with an immune checkpoint inhibitor in starvation-immunotherapy of metastatic solid tumors

免疫疗法 癌症研究 医学 黑色素瘤 转移 癌症 免疫系统 化疗 天冬酰胺酶 癌症免疫疗法 药理学 免疫学 内科学 白血病 淋巴细胞白血病
作者
Sanke Zhang,Like Gong,Yuanzi Sun,Fan Zhang,Weiping Gao
出处
期刊:Biomaterials [Elsevier BV]
卷期号:312: 122740-122740 被引量:2
标识
DOI:10.1016/j.biomaterials.2024.122740
摘要

Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助优秀乐松采纳,获得10
1秒前
zrg完成签到,获得积分10
1秒前
1秒前
1秒前
疯狂的安波完成签到,获得积分10
2秒前
科研通AI5应助melody6156采纳,获得100
3秒前
3秒前
3秒前
4秒前
搜集达人应助slowride采纳,获得10
4秒前
4秒前
充电宝应助lulu采纳,获得10
4秒前
英姑应助冷傲海蓝采纳,获得10
5秒前
5秒前
研友_LOaaVZ完成签到,获得积分10
5秒前
6秒前
袁气小笼包完成签到,获得积分10
6秒前
Ain完成签到,获得积分10
6秒前
6秒前
桐桐应助找北ing采纳,获得10
7秒前
8秒前
CipherSage应助aac采纳,获得10
8秒前
8秒前
huiwanfeifei发布了新的文献求助10
9秒前
飘逸访文完成签到,获得积分10
9秒前
10秒前
10秒前
Ava应助xiongyh10采纳,获得30
11秒前
11秒前
fe999完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
Sumeru发布了新的文献求助10
13秒前
无敌暴龙战士完成签到,获得积分10
13秒前
slowride完成签到,获得积分20
13秒前
13秒前
oZuri完成签到,获得积分10
14秒前
大模型应助juile采纳,获得10
14秒前
迷路的蛋挞完成签到,获得积分20
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245