亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Disentangle irrelevant and critical representations for face anti-spoofing

计算机科学 自编码 代表(政治) 人工智能 杠杆(统计) 欺骗攻击 面部识别系统 面子(社会学概念) 特征学习 对抗制 观点 深度学习 机器学习 模式识别(心理学) 计算机安全 政治 艺术 社会学 视觉艺术 法学 社会科学 政治学
作者
Shikun Zhao,Wei Chen,Fan Zhang,Xiaoli Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:536: 175-190 被引量:2
标识
DOI:10.1016/j.neucom.2023.03.018
摘要

Face recognition systems have been widely applied in security-related areas of our daily life. However, they are vulnerable to face spoofing attacks. Specifically, an attacker can fool a face recognition system into making false decisions, by presenting spoof face information (such as printed photos, replayed videos, etc.), rather than live face, to the face recognition system. Therefore, Face Anti-Spoofing (FAS) is critical for the security operation of a face recognition system. Deep learning-based FAS approaches show the best performance among existing FAS approaches. The basic idea of deep learning-based FAS approaches is to learn statistical representations capable of distinguishing spoof faces from live ones, and then leverage the learned representations for live and spoof face classifications. Therefore, the learned representations play a key role in the performance of FAS. However, most existing approaches learn representations from representation-entangled spaces, in which critical and irrelevant representations for live and spoof face classifications are entangled with each other, thereby bringing a negative influence on the performance of a FAS system. To address the issue, we introduced a Twin Autoencoder Disentanglement (TAD) framework. Our TAD framework utilizes adversarial learning and a reconstruction strategy to disentangle both critical and irrelevant representations into two mutually independent representation spaces. In addition, to further suppress irrelevant representations that may remain in the critical representation space, we design a multi-branch supervision architecture (MSA) and embed it into TAD. MSA achieves the goal via imposing depth supervision and pattern supervision to the critical representation space. i.e., learning spatial representation (face depth information) and texture representation (face spoof pattern information). Experimental results on four typical public datasets, OULU-NPU, SiW, Replay-Attack, and CASIA-MFSD, demonstrate that our proposed TAD approach successfully disentangles critical and irrelevant representations, and the two disentangled representations are more interpretable than state-of-the-art FAS methods. The codes are available at https://github.com/TAD-FAS/TAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣灯泡发布了新的文献求助30
7秒前
行走发布了新的文献求助50
11秒前
vitamin完成签到 ,获得积分10
22秒前
行走发布了新的文献求助10
33秒前
35秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
晚星就位发布了新的文献求助10
41秒前
helpmepaper应助晚星就位采纳,获得10
1分钟前
1分钟前
1分钟前
lizhuoran发布了新的文献求助10
1分钟前
1分钟前
行走发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
行走发布了新的文献求助10
2分钟前
Swear完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
行走发布了新的文献求助10
4分钟前
文章中中中完成签到,获得积分10
4分钟前
4分钟前
魔幻问薇完成签到 ,获得积分10
4分钟前
吸尘器完成签到,获得积分10
5分钟前
5分钟前
行走发布了新的文献求助10
5分钟前
5分钟前
6分钟前
行走发布了新的文献求助10
6分钟前
小马甲应助enreu采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
helpmepaper应助梨子茶采纳,获得10
6分钟前
7分钟前
enreu发布了新的文献求助10
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919967
求助须知:如何正确求助?哪些是违规求助? 3464979
关于积分的说明 10935417
捐赠科研通 3193264
什么是DOI,文献DOI怎么找? 1764559
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794541