子网
随机游动
计算机科学
基因
癌症
基因调控网络
算法
生物
数学
遗传学
计算机网络
统计
基因表达
作者
Ping Meng,Guohua Wang,Hongzhe Guo,Tao Jiang
标识
DOI:10.1016/j.compbiomed.2023.106810
摘要
Cancer development and progression are significantly influenced by cancer driver genes. Understanding cancer driver genes and their mechanisms of action is essential for developing effective cancer treatments. As a result, identifying driver genes is important for drug development, cancer diagnosis, and treatment. Here, we present an algorithm to discover driver genes based on the two-stage random walk with restart (RWR), and the modified method for calculating the transition probability matrix in random walk algorithm. First, we performed the first stage of RWR on the whole gene interaction network, in which we employ a new method for calculating the transition probability matrix and extracted the subnetwork based on nodes that had a high correlation with the seed nodes. The subnetwork was then applied to the second stage of RWR and the nodes were re-ranked in the subnetwork. Our approach outperformed existing methods in identifying driver genes. The outcome of the effect of three gene interaction networks, two rounds of random walk, and the seed nodes’ sensitivity were all compared at the same time. In addition, we identified several potential driver genes, some of which are involved in driving cancer development. Overall, our method is efficient in various cancer types, significantly outperforms existing methods, and can identify possible driver genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI