Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon

相关系数 人工神经网络 偏最小二乘回归 水质 卷积神经网络 环境科学 质谱法 计算机科学
作者
Zhang Hongming,Lifu Zhang,Sa Wang,LinShan Zhang
出处
期刊:Environmental Monitoring and Assessment [Springer Science+Business Media]
卷期号:194 (9)
标识
DOI:10.1007/s10661-022-10118-4
摘要

Abstract Water quality monitoring is very important in agricultural catchments. UV–Vis spectrometry is widely used in place of traditional analytical methods because it is cost effective and fast and there is no chemical waste. In recent years, artificial neural networks have been extensively studied and used in various areas. In this study, we plan to simplify water quality monitoring with UV–Vis spectrometry and artificial neural networks. Samples were collected and immediately taken back to a laboratory for analysis. The absorption spectra of the water sample were acquired within a wavelength range from 200 to 800 nm. Convolutional neural network (CNN) and partial least squares (PLS) methods are used to calculate water parameters and obtain accurate results. The experimental results of this study show that both PLS and CNN methods may obtain an accurate result: linear correlation coefficient (R 2 ) between predicted value and true values of TOC concentrations is 0.927 with PLS model and 0.953 with CNN model, R 2 between predicted value and true values of TSS concentrations is 0.827 with PLS model and 0.915 with CNN model. CNN method may obtain a better linear correlation coefficient (R 2 ) even with small number of samples and can be used for online water quality monitoring combined with UV–Vis spectrometry in agricultural catchment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助夏夏采纳,获得10
1秒前
安详忆雪发布了新的文献求助10
1秒前
小姚姚完成签到,获得积分10
1秒前
克里斯就是逊啦完成签到,获得积分10
2秒前
海海完成签到,获得积分10
2秒前
大淼完成签到,获得积分10
2秒前
jnn发布了新的文献求助20
2秒前
zxh发布了新的文献求助10
2秒前
槑槑完成签到,获得积分10
3秒前
老实雨莲发布了新的文献求助10
3秒前
3秒前
4秒前
田様应助晚风采纳,获得30
4秒前
呆呆子发布了新的文献求助10
4秒前
成就丸子完成签到 ,获得积分10
5秒前
科研废物发布了新的文献求助10
5秒前
5秒前
5秒前
NexusExplorer应助Sissi采纳,获得30
6秒前
6秒前
兔兔要睡觉完成签到 ,获得积分10
7秒前
blue发布了新的文献求助30
7秒前
8秒前
鳗鱼饭饭发布了新的文献求助10
8秒前
8秒前
嘟嘟嘟完成签到,获得积分20
8秒前
赘婿应助777采纳,获得10
9秒前
9秒前
Lucas应助饱满小兔子采纳,获得30
9秒前
9秒前
jnn完成签到,获得积分20
9秒前
MoleMed发布了新的文献求助20
10秒前
研友_VZG64n发布了新的文献求助10
11秒前
隐形曼青应助1234567890采纳,获得10
12秒前
放放风完成签到,获得积分10
12秒前
窝趣嘞完成签到 ,获得积分10
12秒前
gu发布了新的文献求助10
12秒前
lw发布了新的文献求助30
12秒前
charry完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054