Multi-agent behavior strategy game and evolutionary simulation analysis under environmental regulation

补贴 政府(语言学) 业务 过程(计算) 公司治理 进化博弈论 产业组织 公共政策 序贯博弈 环境经济学 结转(投资) 博弈论 经济 微观经济学 财务 经济增长 市场经济 计算机科学 哲学 操作系统 语言学
作者
Zhaoqiang Zhong,Benhong Peng
出处
期刊:Energy & Environment [SAGE Publishing]
卷期号:34 (8): 3365-3390 被引量:3
标识
DOI:10.1177/0958305x221125126
摘要

To avoid severe environmental pollution, the government actively implements environmental regulation (ER) to ensure that enterprises carry out green innovation (GI), and the public participation in supervision has become an important part of the process of environmental governance. In this study, we incorporated the three parties of enterprise, government, and public into one framework and constructed a tripartite evolutionary game model. On this basis, combined with the system dynamics simulation, the behavioral strategy selection and influencing factors of the tripartite agents were analyzed. The results indicate that no matter what the initial strategy of the enterprise, government, or the public is, after a continuous evolutionary game, the three parties will reach a stable and balanced state, that is enterprises carry out GI, governments implement ER, and the public participates in supervision. Whether the government implements ER has a great impact on the enterprises’ decision-making. The public's strategic choices have no obvious influence on the governments’ strategies. Notably, GI costs and government subsidies and fines are the main factors that affect the enterprises’ GI initiatives. Government subsidies are suitable for short-term and appropriate subsidies. Finally, we proposed strategies that could optimize the management processes of ER, while ensuring the effective contributions of enterprises, governments, and the public in a seamless manner. Our study can be used as a reference for the implementation of effective ER and serve policymakers in decision-making, to promote sustainable development at a regional and global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助UniTTEC9560采纳,获得10
刚刚
欣然如风发布了新的文献求助10
1秒前
1秒前
Dr. LJ发布了新的文献求助10
3秒前
深情安青应助小杨采纳,获得10
4秒前
啊啊哈哈哈完成签到 ,获得积分10
6秒前
Layman应助拼搏向上采纳,获得200
7秒前
欣然如风完成签到,获得积分10
8秒前
叶强发布了新的文献求助10
8秒前
丘比特应助张部长采纳,获得10
9秒前
9秒前
Paul_Geromeng完成签到,获得积分10
11秒前
多久上课发布了新的文献求助10
13秒前
天边发布了新的文献求助10
16秒前
Paul_Geromeng发布了新的文献求助10
16秒前
zhj驳回了丘比特应助
17秒前
18秒前
SciGPT应助潇洒智宸采纳,获得10
19秒前
22秒前
23秒前
24秒前
WDWK发布了新的文献求助10
24秒前
失眠的血茗完成签到,获得积分10
24秒前
笑笑发布了新的文献求助10
25秒前
纹银完成签到,获得积分10
26秒前
27秒前
cherlie应助爱学习的曼卉采纳,获得10
27秒前
Akim应助天边采纳,获得10
27秒前
周老八发布了新的文献求助10
29秒前
30秒前
枝枝桃桃完成签到,获得积分10
30秒前
卡恩完成签到 ,获得积分10
30秒前
ym完成签到 ,获得积分10
31秒前
34秒前
大个应助周老八采纳,获得10
34秒前
35秒前
李健应助笑笑采纳,获得10
35秒前
亭树完成签到,获得积分10
36秒前
YY230512完成签到,获得积分20
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712