亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images

质量(理念) 人工智能 计算机科学 机器学习 感知 人工神经网络 钥匙(锁) 行人 工程类 运输工程 哲学 认识论 计算机安全 神经科学 生物
作者
Ye Yu,Wei Zeng,Qiaomu Shen,Xiaohu Zhang,Yi Lü
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:46 (8): 1439-1457 被引量:177
标识
DOI:10.1177/2399808319828734
摘要

This study proposes a workable approach for quantitatively measuring the perceptual-based visual quality of streets, which has often relied on subjective impressions or feelings. With the help of recently emerged street view images and machine learning algorithms, an evaluation model has been trained to assess the perceived visual quality with accuracy similar to that of experienced urban designers, to provide full coverage and detailed results for a citywide area. The town centre of Shanghai was selected for the site. Around 140,000 screenshots from Baidu Street View were processed and a machine learning algorithm, SegNet, was applied to intelligently extract the pixels representing key elements affecting the visual quality of streets, including the building frontage, greenery, sky view, pedestrian space, motorisation, and diversity. A Java-based program was then produced to automatically collect the preferences of experienced urban designers on representative sample images. Another machine learning algorithm, i.e. an artificial neural network, was used to train an evaluation model to achieve a citywide, high-resolution evaluation of the visual quality of the streets. Further validation through different approaches shows this evaluation model obtains a satisfactory accuracy. The results from the artificial neural network also help to explore the high or low effects of various key elements on visual quality. In short, this study contributes to the development of human-centred planning and design by providing continuous measurements of an ‘unmeasurable’ quality across large-scale areas. Meanwhile, insights on the perceptual-based visual quality and detailed mapping of various key elements in streets can assist in more efficient street renewal by providing accurate design guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
叶千山完成签到 ,获得积分10
1秒前
4秒前
4秒前
11122发布了新的文献求助10
4秒前
4秒前
婉莹完成签到 ,获得积分0
8秒前
温暖水云发布了新的文献求助10
9秒前
9秒前
12秒前
11122发布了新的文献求助10
14秒前
Kristopher完成签到 ,获得积分10
15秒前
情怀应助王佳俊采纳,获得10
16秒前
16秒前
汉堡包应助tdtk采纳,获得10
20秒前
Cast_Lappland发布了新的文献求助10
22秒前
26秒前
27秒前
王佳俊发布了新的文献求助10
31秒前
hankongli完成签到 ,获得积分10
31秒前
32秒前
沐阳完成签到 ,获得积分10
41秒前
王佳俊完成签到,获得积分10
44秒前
48秒前
49秒前
壹玖一陆完成签到,获得积分20
51秒前
51秒前
53秒前
豆都发布了新的文献求助10
53秒前
耳东陈完成签到 ,获得积分10
54秒前
壹玖一陆发布了新的文献求助10
55秒前
科研通AI6应助壹玖一陆采纳,获得10
1分钟前
1分钟前
我是老大应助wuzihao采纳,获得10
1分钟前
max完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CodeCraft应助传统的书包采纳,获得30
1分钟前
Evaporate发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490