材料科学
锂(药物)
离子
可扩展性
纳米技术
计算机科学
数据库
有机化学
医学
内分泌学
化学
作者
Xijun Xu,Zhuosen Wang,Dechao Zhang,Shiyong Zuo,Jun Liu,Min Zhu
标识
DOI:10.1021/acsami.0c14757
摘要
Lithium-ion batteries (LIBs), the most successful commercial energy storage devices, are now widespread in our daily life. However, the lack of appropriate electrode materials with long lifespan and superior rate capability is the urgent bottleneck for the development of high-performance LIBs. Herein, a hierarchical Bi@C bulk is developed via a scalable pyrolysis method. Due to the ultrafine size of Bi nanoparticles and in situ generated porous carbon framework, this Bi@C anode evidently facilitates the diffusion of Li+/electron, availably inhibits the agglomeration of active nano-Bi, and effectively mitigates the volume fluctuation. This hierarchical Bi@C bulk exhibits stable cycling performance for both LIBs (256 mAh g-1 at 1.0 A g-1 over 1400 cycles) and potassium-ion batteries (271 mAh g-1 at 0.1 A g-1 for 200 cycles). More importantly, when coupled with a commercial LiCoO2 cathode, the assembled LiCoO2//Bi@C cells provide an output voltage of 2.9 V and retain a capacity of 202 mAh g-1 at 0.15 A g-1. Moreover, kinetic analysis and in situ X-ray diffraction characterization reveal that the Bi@C anode displays a dominated pseudocapacitance behavior and a typical alloying storage mechanism during the cycling process.
科研通智能强力驱动
Strongly Powered by AbleSci AI