Improving black tea quality through optimization of withering conditions using artificial neural network and genetic algorithm

多酚氧化酶 人工神经网络 水分 含水量 过氧化物酶 相对湿度 生物系统 化学 计算机科学 材料科学 人工智能 工程类 气象学 生物 生物化学 复合材料 物理 岩土工程
作者
Shrilekha Das,Tanmoy Samanta,Ashis Datta
出处
期刊:Journal of Food Processing and Preservation [Wiley]
卷期号:45 (3) 被引量:7
标识
DOI:10.1111/jfpp.15273
摘要

Polyphenol oxidase and peroxidase activity and moisture loss have been used for optimization of withering parameters in black tea production. Leaves of TV25 clone were withered at different air temperature (25, 30, 35°C) and relative humidity (RH) (60, 75, 85%), with constant air flow rate. With higher air temperature, Polyphenol oxidase specific activity decreased, whereas peroxidase specific activity was enhanced. A multilayered feed forward artificial neural network, with single hidden layer, was trained and validated using experimental data based on mean square error and coefficient of determination (R2). Optimized withering parameters for both crush-tear-curl (CTC) and orthodox tea production were obtained using Genetic Algorithms to maximize enzyme activity and bring down moisture content within desired range. A penalty function based on distance from feasible region was incorporated in Genetic Algorithm. Optimized parameters are: CTC – temperature: 29.13°C, RH: 79.58%, duration: 11.41 hr; Orthodox – temperature: 33.04°C, RH: 77.27%, duration: 10.60 hr. Novelty impact statement Polyphenol oxidase and peroxidase enzyme activity has been used as optimization criteria, along with moisture loss, for selection of withering parameters. Soft computing methods like Artificial Neural Network and Genetic Algorithms have been employed for modeling and optimization of the nonlinear relation between withering parameters and enzyme activity and moisture content with penalty function for constrained optimization of moisture content in leaves. In this study, optimum withering conditions in terms of air temperature, relative humidity, and duration were found out to obtain maximum enzyme activity and desired moisture content in leaf for producing better quality tea.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuniyukuai完成签到,获得积分10
刚刚
1秒前
3秒前
5秒前
小刚炮完成签到,获得积分10
5秒前
漂亮的倒挂金钩完成签到,获得积分10
6秒前
6秒前
蓝天应助jl采纳,获得10
7秒前
权威发布了新的文献求助10
8秒前
无花果应助正直芫采纳,获得10
9秒前
091发布了新的文献求助10
9秒前
英俊的铭应助acs924采纳,获得10
9秒前
Bewhy发布了新的文献求助30
10秒前
11秒前
Aaron发布了新的文献求助10
12秒前
12秒前
shhoing应助耍酷的天德采纳,获得10
12秒前
鳗鱼雪巧完成签到,获得积分10
14秒前
14秒前
叶公子完成签到,获得积分10
15秒前
飞鸿影下完成签到 ,获得积分10
15秒前
Mic应助眨眨眼采纳,获得30
15秒前
张文懿发布了新的文献求助10
15秒前
不想做实验完成签到,获得积分10
16秒前
qiushui发布了新的文献求助10
17秒前
18秒前
王小茹完成签到,获得积分10
19秒前
xun完成签到,获得积分10
19秒前
21秒前
华仔应助kacotoDu采纳,获得10
22秒前
张文懿完成签到,获得积分10
24秒前
qiushui完成签到,获得积分10
25秒前
26秒前
正直芫发布了新的文献求助10
26秒前
星辰大海应助英俊雪曼采纳,获得10
27秒前
权_888完成签到 ,获得积分10
28秒前
木圭发布了新的文献求助10
29秒前
惠葶完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
深情安青应助聪明的柠檬采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541412
求助须知:如何正确求助?哪些是违规求助? 4627832
关于积分的说明 14605458
捐赠科研通 4568899
什么是DOI,文献DOI怎么找? 2504849
邀请新用户注册赠送积分活动 1482334
关于科研通互助平台的介绍 1453871