清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics

无线电技术 医学 支持向量机 随机森林 接收机工作特性 人工智能 放射科 超声波 肝癌 多层感知器 灰度级 神经组阅片室 癌症 机器学习 计算机科学 人工神经网络 像素 内科学 神经学 精神科
作者
Bing Mao,Jingdong Ma,Shaobo Duan,Yuwei Xia,Yaru Tao,Lianzhong Zhang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (7): 4576-4586 被引量:85
标识
DOI:10.1007/s00330-020-07562-6
摘要

To investigate the application of machine learning–based ultrasound radiomics in preoperative classification of primary and metastatic liver cancer. Data of 114 consecutive histopathologically confirmed patients with liver cancer from January 2018 to November 2019 were retrospectively analyzed. All patients underwent liver ultrasonography within 1 week before hepatectomy or fine-needle biopsy. The liver lesions were manually segmented by two experts using ITK-SNAP software. Seven categories of radiomics features, including first-order, two-dimensional shape, gray-level co-occurrence matrices, gray-level run-length matrix, gray-level size-zone matrix, neighboring gray tone difference matrix, and gray-level dependence matrix, were extracted on the Pyradiomics platform. Fourteen filters were applied to the original images, and derived images were obtained. Then, the dimensions of radiomics features were reduced by least absolute shrinkage and selection operator (Lasso) method. Finally, k-nearest neighbor (KNN), logistic regression (LR), multilayer perceptron (MLP), random forest (RF), and support vector machine (SVM) were employed to distinguish primary liver cancer from metastatic liver cancer by a fivefold cross-validation strategy. The performance of the established model was mainly evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and accuracy. One thousand four hundred nine radiomics features were extracted from the original images and/or derived images for each patient. The mentioned five machine learning classifiers were able to differentiate primary liver cancer from metastatic liver cancer. LR outperformed other classifiers, with the accuracy of 0.843 ± 0.078 (AUC, 0.816 ± 0.088; sensitivity, 0.768 ± 0.232; specificity, 0.880 ± 0.117). Machine learning–based ultrasound radiomics features are able to non-invasively distinguish primary liver tumors from metastatic liver tumors. • Ultrasound-based radiomics was initially used for preoperative classification of primary versus metastatic liver cancer. • Multiple machine learning–based algorithms with cross-validation strategy were applied to extract machine learning–based ultrasound radiomics features. • Distinction between primary and metastatic tumors was obtained with a sensitivity of 0.768 and a specificity of 0.880.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason完成签到 ,获得积分10
16秒前
24秒前
27秒前
Arthur完成签到 ,获得积分10
39秒前
suiwuya完成签到,获得积分10
50秒前
DrLuffy完成签到 ,获得积分10
55秒前
fogsea完成签到,获得积分0
56秒前
cdercder应助科研通管家采纳,获得20
1分钟前
Bruce完成签到 ,获得积分10
1分钟前
1分钟前
5433完成签到 ,获得积分10
1分钟前
月亮与六便士完成签到 ,获得积分10
1分钟前
温暖果汁发布了新的文献求助10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
Square完成签到,获得积分10
2分钟前
葫芦芦芦完成签到 ,获得积分10
2分钟前
affff完成签到 ,获得积分10
2分钟前
赧赧完成签到 ,获得积分10
2分钟前
OVO完成签到,获得积分20
2分钟前
Xu完成签到,获得积分10
2分钟前
凤迎雪飘完成签到,获得积分10
2分钟前
OVO发布了新的文献求助20
2分钟前
傲娇的冬萱完成签到 ,获得积分10
3分钟前
现代凝安完成签到,获得积分10
3分钟前
wintel完成签到,获得积分10
3分钟前
济民财完成签到,获得积分10
3分钟前
打打应助qwdqw采纳,获得10
3分钟前
温暖果汁完成签到,获得积分10
3分钟前
Microbiota完成签到,获得积分10
3分钟前
3分钟前
小乙猪完成签到 ,获得积分0
3分钟前
qwdqw发布了新的文献求助10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
CoCo完成签到 ,获得积分10
4分钟前
qwdqw完成签到,获得积分10
4分钟前
kkk完成签到 ,获得积分10
4分钟前
wyi完成签到,获得积分10
4分钟前
科研通AI5应助OVO采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468