Generalized Network Psychometrics: Combining Network and Latent Variable Models

潜变量 协方差 结构方程建模 一般化 计算机科学 网络模型 潜变量模型 残余物 条件独立性 地方独立性 机器学习 人工智能 计量经济学 数学 数据挖掘 算法 统计 数学分析
作者
Sacha Epskamp,Mijke Rhemtulla,Denny Borsboom
出处
期刊:Psychometrika [Springer Science+Business Media]
卷期号:82 (4): 904-927 被引量:522
标识
DOI:10.1007/s11336-017-9557-x
摘要

We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of structural equation modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework latent network modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance-covariance structure of indicators is modeled as a network. We term this generalization residual network modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms perform adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kypsi发布了新的文献求助30
1秒前
1秒前
coster发布了新的文献求助10
2秒前
要减肥的慕山完成签到,获得积分10
3秒前
6秒前
所所应助苹果老三采纳,获得30
7秒前
上官若男应助醒醒采纳,获得10
7秒前
泡沫发布了新的文献求助10
9秒前
gmjinfeng完成签到,获得积分0
11秒前
13秒前
FBQ完成签到,获得积分10
14秒前
15秒前
含糊完成签到 ,获得积分10
16秒前
科研通AI5应助无奈的萍采纳,获得10
16秒前
17秒前
泡沫完成签到,获得积分10
18秒前
HXX发布了新的文献求助10
18秒前
19秒前
米田共发布了新的文献求助10
21秒前
xixi发布了新的文献求助10
22秒前
pluto应助三金采纳,获得20
23秒前
Lucas应助99v587采纳,获得10
24秒前
25秒前
呆萌香菇应助明理的以亦采纳,获得10
26秒前
科研通AI5应助HXX采纳,获得30
28秒前
白衣修身发布了新的文献求助10
30秒前
32秒前
虚影发布了新的文献求助100
33秒前
34秒前
35秒前
花花完成签到,获得积分20
35秒前
37秒前
38秒前
花花发布了新的文献求助10
39秒前
39秒前
无奈的萍发布了新的文献求助10
40秒前
yudandan@CJLU发布了新的文献求助10
40秒前
e746700020发布了新的文献求助10
46秒前
47秒前
吉尼太美完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614