已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Data-Efficient Mechanism-Agnostic Capacity Fade Model for Li-Ion Batteries

淡出 电池(电) 计算机科学 可靠性(半导体) 可靠性工程 工程类 量子力学 操作系统 物理 功率(物理)
作者
Minho Kim,Soohee Han
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (7): 6267-6275 被引量:21
标识
DOI:10.1109/tie.2020.2996156
摘要

Accurate capacity fade prediction of Li-ion batteries is essential to reduce the time spent by manufacturers in performing quality assurance tests and to ensure the safety and durability of these batteries for end users. Various complicated aging mechanisms and the resulting capacity fade phenomena of Li-ion batteries make such predictions challenging; thus, mechanism-agnostic approaches using empirical and data-driven models are considered to be promising. This article proposes a mechanism-agnostic capacity fade empirical model called aging density function model (ADFM) for Li-ion batteries. Developed by innovating existing empirical models, the proposed ADFM predicts capacity fades for arbitrary battery input current trajectories, requires no additional experiments at the prediction phase, and reflects real batteries phenomena such as the varying amount of capacity fade for each cycle. As the proposed ADFM could generate a large amount of synthetic data, it was augmented with Bayesian neural networks (BNNs) to enhance its data efficiency. As a result, it can completely utilize the experimental data and achieve reasonable prediction accuracy regardless of the amount of experimental data. This BNN-augmented ADFM can also provide the reliability of the capacity fade prediction to ensure safety. Through charge/discharge cycle tests with an NCM/graphite Li-ion battery, the proposed BNN-augmented ADFM was shown to provide good performance in terms of the capacity fade prediction accuracy, with a mean absolute error of approximately 0.5% and maximum absolute error of approximately 2.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
YuCheng完成签到,获得积分10
3秒前
Cameron完成签到,获得积分10
5秒前
7秒前
7秒前
明理的怜翠完成签到 ,获得积分10
8秒前
ZhouYW应助ifegiugfieugfig采纳,获得10
9秒前
9秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
12秒前
猪猪hero应助独眼采纳,获得10
12秒前
杨涛完成签到,获得积分10
12秒前
13秒前
栗子球发布了新的文献求助10
13秒前
13秒前
orchid发布了新的文献求助10
14秒前
笑笑发布了新的文献求助10
15秒前
清脆糖豆完成签到,获得积分10
16秒前
婷婷小笑应助charlie67373采纳,获得10
17秒前
18秒前
高c发布了新的文献求助30
18秒前
18秒前
倪永孝发布了新的文献求助10
19秒前
科研通AI5应助踏实的老四采纳,获得10
20秒前
sadf完成签到,获得积分20
20秒前
21秒前
慕青应助顺毛大帝采纳,获得10
21秒前
顾矜应助manguang采纳,获得10
22秒前
恢复出厂设置完成签到,获得积分10
22秒前
24秒前
25秒前
李归来完成签到 ,获得积分10
26秒前
wangliangyu发布了新的文献求助10
32秒前
路飞完成签到,获得积分10
34秒前
sadf发布了新的文献求助10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436