PSO+: A new particle swarm optimization algorithm for constrained problems

多群优化 数学优化 趋同(经济学) 帝国主义竞争算法 元优化 局部最优 萤火虫算法 水准点(测量) 群体智能 混合算法(约束满足) 收敛速度 无导数优化
作者
Manoela Kohler,Marley Vellasco,Ricardo Tanscheit
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:85: 105865-105865 被引量:56
标识
DOI:10.1016/j.asoc.2019.105865
摘要

The Particle Swarm Optimization algorithm is a metaheuristic based on populations of individuals in which solution candidates evolve through simulation of a simplified model of social adaptation. By aggregating robustness, efficiency and simplicity, PSO has gained great popularity. Modified PSO algorithms have been proposed to solve optimization problems with domain, linear and nonlinear constraints. Other algorithms that use multi-objective optimization to deal with constrained problems face the problem of not being able to guarantee finding feasible solutions. Current PSO algorithms that deal with constraints only treat domain constraints by controlling the velocity of particle displacement in the swarm, or do so inefficiently by randomly resetting each infeasible particle. This approach may make it infeasible to optimize certain problems, especially real ones. This work presents a new particle swarm optimization algorithm, called PSO+, capable of solving problems with linear and nonlinear constraints in order to solve these deficiencies. The proposed algorithm uses a feasibility repair operator and two swarms to ensure there will always be a swarm whose particles fully respect every constraint. A new particle update method is also proposed to insert diversity into the swarm and improve search-space coverage, allowing the search-space border to be exploited as well, which is particularly convenient when the optimization involves active constraints in global optimum. Two heuristics are proposed to initialize a feasible swarm with the purpose of speeding up the initialization mechanism and ensuring diversity at the starting point of the optimization process. Furthermore, a neighborhood topology is proposed to minimize premature convergence. The proposed algorithm was tested for twenty-four benchmark functions, as well as in a real reservoir drainage plan optimization problem. Results attest that the new algorithm is competitive, since it increases the efficiency of the PSO and the speed of convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcx完成签到,获得积分10
1秒前
wy18567337203发布了新的文献求助10
1秒前
2秒前
隐形曼青应助专注语堂采纳,获得10
2秒前
Wwyy完成签到,获得积分10
4秒前
斯寜应助瞌瞌采纳,获得10
4秒前
科目三应助霁星河采纳,获得10
6秒前
zz发布了新的文献求助10
6秒前
7秒前
阔达幼珊完成签到,获得积分10
8秒前
8秒前
内向绿竹应助落寞的妖妖采纳,获得10
8秒前
李一诺完成签到 ,获得积分10
9秒前
10秒前
小李完成签到,获得积分20
11秒前
manan发布了新的文献求助10
11秒前
天天快乐应助wang5945采纳,获得10
12秒前
tamo发布了新的文献求助10
13秒前
科目三应助ZZZZZ采纳,获得10
14秒前
科研通AI5应助小旺仔采纳,获得10
14秒前
wwss发布了新的文献求助10
15秒前
路上的小黄花完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
南橘完成签到 ,获得积分10
18秒前
wwss完成签到,获得积分10
19秒前
沉静的元容完成签到,获得积分10
19秒前
zz完成签到,获得积分20
21秒前
11111发布了新的文献求助30
21秒前
彭于晏完成签到,获得积分0
21秒前
小薇丸子发布了新的文献求助10
21秒前
爱吃蔬菜完成签到,获得积分10
22秒前
ding应助kk采纳,获得10
23秒前
tamo完成签到,获得积分10
24秒前
zcx1995完成签到,获得积分10
26秒前
jayliu完成签到,获得积分10
26秒前
26秒前
Ink完成签到,获得积分20
31秒前
广州东站发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742