亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison Study of Radiomics and Deep Learning-Based Methods for Thyroid Nodules Classification Using Ultrasound Images

无线电技术 甲状腺结节 计算机科学 人工智能 超声波 甲状腺 放射科 深度学习 模式识别(心理学) 医学 内科学
作者
Yongfeng Wang,Wenwen Yue,Xiaolong Li,Shuyu Liu,Le‐Hang Guo,Hui‐Xiong Xu,Heye Zhang,Guang Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 52010-52017 被引量:71
标识
DOI:10.1109/access.2020.2980290
摘要

Thyroid nodules have a high prevalence and a small percentage is malignant. Many non-invasive methods have been developed with the help of the Internet of Things to improve the detection rate of malignant nodules. These methods can be roughly categorized into two classes: radiomics based and deep learning based approaches. In general, convolutional neural networks based deep learning methods have achieved promising performance in many medical image analysis and classification applications; however, no existing comparison has been done between radiomics based and deep learning based approaches. Therefore, in this paper, we aim to compare the performance of radiomics and deep learning based methods for the classification of thyroid nodules from ultrasound images. On one hand, we developed a radiomics based method, which consists of extracting high throughput 302-dimensional statistical features from pre-processed images. Then dimension reduction was performed using mutual information and linear discriminant analysis respectively to achieve the final classification. On the other hand, a deep learning based method was also developed and tested by pre-training a VGG16 model with fine-tuning. Ultrasound images including 3120 images (1841 benign nodules and 1393 malignant nodules) from 1040 cases were retrospectively collected. The dataset was divided into 80% training and 20% testing data. The highest accuracies yielded on the testing data for radiomics and deep learning based methods were 66.81% and 74.69%, respectively. A comparison result demonstrated that the deep learning based method can achieve a better performance than using radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到,获得积分20
3秒前
4秒前
11111发布了新的文献求助10
9秒前
10秒前
桐桐应助于慧中采纳,获得10
18秒前
JrPaleo101完成签到,获得积分10
22秒前
29秒前
于慧中发布了新的文献求助10
36秒前
XiYang完成签到,获得积分10
50秒前
冉亦完成签到,获得积分10
1分钟前
顾矜应助我要发nature采纳,获得10
1分钟前
斯文败类应助ma采纳,获得10
2分钟前
2分钟前
ma发布了新的文献求助10
2分钟前
shw完成签到,获得积分10
2分钟前
obedVL完成签到,获得积分10
2分钟前
稳重的雨灵完成签到,获得积分10
2分钟前
2分钟前
在水一方应助可靠的寒风采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助稳重的雨灵采纳,获得10
3分钟前
3分钟前
3分钟前
我要发nature完成签到,获得积分10
3分钟前
Hello应助我要发nature采纳,获得10
3分钟前
梁昊完成签到,获得积分10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
梁昊发布了新的文献求助10
4分钟前
欣喜眼神发布了新的文献求助10
4分钟前
4分钟前
吐丝麵包完成签到 ,获得积分10
4分钟前
StonesKing发布了新的文献求助10
4分钟前
jyy应助欣喜眼神采纳,获得10
4分钟前
4分钟前
blueblue发布了新的文献求助10
4分钟前
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526315
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773575